yaltik_odoo_custom/yaltik_dsl/__coconut__.py

734 lines
34 KiB
Python

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
# type: ignore
# Compiled with Coconut version 1.4.3 [Ernest Scribbler]
"""Built-in Coconut utilities."""
# Coconut Header: -------------------------------------------------------------
from __future__ import print_function, absolute_import, unicode_literals, division
import sys as _coconut_sys
from __builtin__ import chr, filter, hex, input, int, map, object, oct, open, print, range, str, zip, filter, reversed, enumerate, raw_input, xrange
py_chr, py_hex, py_input, py_int, py_map, py_object, py_oct, py_open, py_print, py_range, py_str, py_zip, py_filter, py_reversed, py_enumerate, py_raw_input, py_xrange, py_repr = chr, hex, input, int, map, object, oct, open, print, range, str, zip, filter, reversed, enumerate, raw_input, xrange, repr
_coconut_NotImplemented, _coconut_raw_input, _coconut_xrange, _coconut_int, _coconut_long, _coconut_print, _coconut_str, _coconut_unicode, _coconut_repr = NotImplemented, raw_input, xrange, int, long, print, str, unicode, repr
from future_builtins import *
chr, str = unichr, unicode
from io import open
class object(object):
__slots__ = ()
def __ne__(self, other):
eq = self == other
if eq is _coconut_NotImplemented:
return eq
return not eq
class int(_coconut_int):
__slots__ = ()
if hasattr(_coconut_int, "__doc__"):
__doc__ = _coconut_int.__doc__
class __metaclass__(type):
def __instancecheck__(cls, inst):
return _coconut.isinstance(inst, (_coconut_int, _coconut_long))
def __subclasscheck__(cls, subcls):
return _coconut.issubclass(subcls, (_coconut_int, _coconut_long))
class range(object):
__slots__ = ("_xrange",)
if hasattr(_coconut_xrange, "__doc__"):
__doc__ = _coconut_xrange.__doc__
def __init__(self, *args):
self._xrange = _coconut_xrange(*args)
def __iter__(self):
return _coconut.iter(self._xrange)
def __reversed__(self):
return _coconut.reversed(self._xrange)
def __len__(self):
return _coconut.len(self._xrange)
def __contains__(self, elem):
return elem in self._xrange
def __getitem__(self, index):
if _coconut.isinstance(index, _coconut.slice):
args = _coconut.slice(*self._args)
start, stop, step, ind_step = (args.start if args.start is not None else 0), args.stop, (args.step if args.step is not None else 1), (index.step if index.step is not None else 1)
return self.__class__((start if ind_step >= 0 else stop - step) if index.start is None else start + step * index.start if index.start >= 0 else stop + step * index.start, (stop if ind_step >= 0 else start - step) if index.stop is None else start + step * index.stop if index.stop >= 0 else stop + step * index.stop, step if index.step is None else step * index.step)
else:
return self._xrange[index]
def count(self, elem):
"""Count the number of times elem appears in the range."""
return _coconut_int(elem in self._xrange)
def index(self, elem):
"""Find the index of elem in the range."""
if elem not in self._xrange: raise _coconut.ValueError(_coconut.repr(elem) + " is not in range")
start, _, step = self._xrange.__reduce_ex__(2)[1]
return (elem - start) // step
def __repr__(self):
return _coconut.repr(self._xrange)[1:]
@property
def _args(self):
return self._xrange.__reduce__()[1]
def __reduce_ex__(self, protocol):
return (self.__class__, self._xrange.__reduce_ex__(protocol)[1])
def __reduce__(self):
return self.__reduce_ex__(_coconut.pickle.DEFAULT_PROTOCOL)
def __hash__(self):
return _coconut.hash(self._args)
def __copy__(self):
return self.__class__(*self._args)
def __eq__(self, other):
return _coconut.isinstance(other, self.__class__) and self._args == other._args
from collections import Sequence as _coconut_Sequence
_coconut_Sequence.register(range)
from functools import wraps as _coconut_wraps
@_coconut_wraps(_coconut_print)
def print(*args, **kwargs):
file = kwargs.get("file", _coconut_sys.stdout)
flush = kwargs.get("flush", False)
if "flush" in kwargs:
del kwargs["flush"]
if _coconut.hasattr(file, "encoding") and file.encoding is not None:
_coconut_print(*(_coconut_unicode(x).encode(file.encoding) for x in args), **kwargs)
else:
_coconut_print(*(_coconut_unicode(x).encode() for x in args), **kwargs)
if flush:
file.flush()
@_coconut_wraps(_coconut_raw_input)
def input(*args, **kwargs):
if _coconut.hasattr(_coconut_sys.stdout, "encoding") and _coconut_sys.stdout.encoding is not None:
return _coconut_raw_input(*args, **kwargs).decode(_coconut_sys.stdout.encoding)
return _coconut_raw_input(*args, **kwargs).decode()
@_coconut_wraps(_coconut_repr)
def repr(obj):
if isinstance(obj, _coconut_unicode):
return _coconut_unicode(_coconut_repr(obj)[1:])
if isinstance(obj, _coconut_str):
return "b" + _coconut_unicode(_coconut_repr(obj))
return _coconut_unicode(_coconut_repr(obj))
ascii = repr
def raw_input(*args):
"""Coconut uses Python 3 "input" instead of Python 2 "raw_input"."""
raise _coconut.NameError('Coconut uses Python 3 "input" instead of Python 2 "raw_input"')
def xrange(*args):
"""Coconut uses Python 3 "range" instead of Python 2 "xrange"."""
raise _coconut.NameError('Coconut uses Python 3 "range" instead of Python 2 "xrange"')
class _coconut(object):
import collections, copy, functools, types, itertools, operator, threading, weakref, os, warnings
try:
from backports.functools_lru_cache import lru_cache
functools.lru_cache = lru_cache
except ImportError: pass
try:
import trollius as asyncio
except ImportError:
class you_need_to_install_trollius: pass
asyncio = you_need_to_install_trollius()
import cPickle as pickle
OrderedDict = collections.OrderedDict
abc = collections
class typing(object):
@staticmethod
def NamedTuple(name, fields):
return _coconut.collections.namedtuple(name, [x for x, t in fields])
Ellipsis, Exception, AttributeError, ImportError, IndexError, KeyError, NameError, TypeError, ValueError, StopIteration, classmethod, dict, enumerate, filter, float, frozenset, getattr, hasattr, hash, id, int, isinstance, issubclass, iter, len, list, locals, map, min, max, next, object, property, range, reversed, set, slice, str, sum, super, tuple, type, zip, repr, bytearray = Ellipsis, Exception, AttributeError, ImportError, IndexError, KeyError, NameError, TypeError, ValueError, StopIteration, classmethod, dict, enumerate, filter, float, frozenset, getattr, hasattr, hash, id, int, isinstance, issubclass, iter, len, list, locals, map, min, max, next, object, property, range, reversed, set, slice, str, sum, super, tuple, type, zip, staticmethod(repr), bytearray
_coconut_sentinel = _coconut.object()
class MatchError(Exception):
"""Pattern-matching error. Has attributes .pattern and .value."""
__slots__ = ("pattern", "value")
def _coconut_igetitem(iterable, index):
if isinstance(iterable, (_coconut_reversed, _coconut_map, _coconut.zip, _coconut_enumerate, _coconut_count, _coconut.abc.Sequence)):
return iterable[index]
if not _coconut.isinstance(index, _coconut.slice):
if index < 0:
return _coconut.collections.deque(iterable, maxlen=-index)[0]
return _coconut.next(_coconut.itertools.islice(iterable, index, index + 1))
if index.start is not None and index.start < 0 and (index.stop is None or index.stop < 0) and index.step is None:
queue = _coconut.collections.deque(iterable, maxlen=-index.start)
if index.stop is not None:
queue = _coconut.list(queue)[:index.stop - index.start]
return queue
if (index.start is not None and index.start < 0) or (index.stop is not None and index.stop < 0) or (index.step is not None and index.step < 0):
return _coconut.list(iterable)[index]
return _coconut.itertools.islice(iterable, index.start, index.stop, index.step)
class _coconut_base_compose(object):
__slots__ = ("func", "funcstars")
def __init__(self, func, *funcstars):
self.func = func
self.funcstars = []
for f, stars in funcstars:
if _coconut.isinstance(f, _coconut_base_compose):
self.funcstars.append((f.func, stars))
self.funcstars += f.funcstars
else:
self.funcstars.append((f, stars))
def __call__(self, *args, **kwargs):
arg = self.func(*args, **kwargs)
for f, stars in self.funcstars:
if stars == 0:
arg = f(arg)
elif stars == 1:
arg = f(*arg)
elif stars == 2:
arg = f(**arg)
else:
raise _coconut.ValueError("invalid arguments to " + _coconut.repr(self))
return arg
def __repr__(self):
return _coconut.repr(self.func) + " " + " ".join(("..*> " if star == 1 else "..**>" if star == 2 else "..> ") + _coconut.repr(f) for f, star in self.funcstars)
def __reduce__(self):
return (self.__class__, (self.func,) + _coconut.tuple(self.funcstars))
def __get__(self, obj, objtype=None):
return _coconut.functools.partial(self, obj)
def _coconut_forward_compose(func, *funcs): return _coconut_base_compose(func, *((f, 0) for f in funcs))
def _coconut_back_compose(*funcs): return _coconut_forward_compose(*_coconut.reversed(funcs))
def _coconut_forward_star_compose(func, *funcs): return _coconut_base_compose(func, *((f, 1) for f in funcs))
def _coconut_back_star_compose(*funcs): return _coconut_forward_star_compose(*_coconut.reversed(funcs))
def _coconut_forward_dubstar_compose(func, *funcs): return _coconut_base_compose(func, *((f, 2) for f in funcs))
def _coconut_back_dubstar_compose(*funcs): return _coconut_forward_dubstar_compose(*_coconut.reversed(funcs))
def _coconut_pipe(x, f): return f(x)
def _coconut_star_pipe(xs, f): return f(*xs)
def _coconut_dubstar_pipe(kws, f): return f(**kws)
def _coconut_back_pipe(f, x): return f(x)
def _coconut_back_star_pipe(f, xs): return f(*xs)
def _coconut_back_dubstar_pipe(f, kws): return f(**kws)
def _coconut_assert(cond, msg=None): assert cond, msg if msg is not None else "(assert) got falsey value " + _coconut.repr(cond)
def _coconut_bool_and(a, b): return a and b
def _coconut_bool_or(a, b): return a or b
def _coconut_none_coalesce(a, b): return a if a is not None else b
def _coconut_minus(a, *rest):
if not rest:
return -a
for b in rest:
a = a - b
return a
@_coconut.functools.wraps(_coconut.itertools.tee)
def tee(iterable, n=2):
if n >= 0 and _coconut.isinstance(iterable, (_coconut.tuple, _coconut.frozenset)):
return (iterable,) * n
if n > 0 and (_coconut.hasattr(iterable, "__copy__") or _coconut.isinstance(iterable, _coconut.abc.Sequence)):
return (iterable,) + _coconut.tuple(_coconut.copy.copy(iterable) for _ in _coconut.range(n - 1))
return _coconut.itertools.tee(iterable, n)
class reiterable(object):
"""Allows an iterator to be iterated over multiple times."""
__slots__ = ("iter",)
def __init__(self, iterable):
self.iter = iterable
def _get_new_iter(self):
self.iter, new_iter = _coconut_tee(self.iter)
return new_iter
def __iter__(self):
return _coconut.iter(self._get_new_iter())
def __getitem__(self, index):
return _coconut_igetitem(self._get_new_iter(), index)
def __reversed__(self):
return _coconut_reversed(self._get_new_iter())
def __len__(self):
return _coconut.len(self.iter)
def __repr__(self):
return "reiterable(%r)" % (self.iter,)
def __reduce__(self):
return (self.__class__, (self.iter,))
def __copy__(self):
return self.__class__(self._get_new_iter())
def __fmap__(self, func):
return _coconut_map(func, self)
class scan(object):
"""Reduce func over iterable, yielding intermediate results,
optionally starting from initializer."""
__slots__ = ("func", "iter", "initializer")
def __init__(self, function, iterable, initializer=_coconut_sentinel):
self.func = function
self.iter = iterable
self.initializer = initializer
def __iter__(self):
acc = self.initializer
if acc is not _coconut_sentinel:
yield acc
for item in self.iter:
if acc is _coconut_sentinel:
acc = item
else:
acc = self.func(acc, item)
yield acc
def __len__(self):
return _coconut.len(self.iter)
def __repr__(self):
return "scan(%r, %r)" % (self.func, self.iter)
def __reduce__(self):
return (self.__class__, (self.func, self.iter))
def __copy__(self):
return self.__class__(self.func, _coconut.copy.copy(self.iter))
def __fmap__(self, func):
return _coconut_map(func, self)
class reversed(object):
__slots__ = ("iter",)
if hasattr(_coconut.map, "__doc__"):
__doc__ = _coconut.reversed.__doc__
def __new__(cls, iterable):
if _coconut.isinstance(iterable, _coconut.range):
return iterable[::-1]
if not _coconut.hasattr(iterable, "__reversed__") or _coconut.isinstance(iterable, (_coconut.list, _coconut.tuple)):
return _coconut.object.__new__(cls)
return _coconut.reversed(iterable)
def __init__(self, iterable):
self.iter = iterable
def __iter__(self):
return _coconut.iter(_coconut.reversed(self.iter))
def __getitem__(self, index):
if _coconut.isinstance(index, _coconut.slice):
return _coconut_igetitem(self.iter, _coconut.slice(-(index.start + 1) if index.start is not None else None, -(index.stop + 1) if index.stop else None, -(index.step if index.step is not None else 1)))
return _coconut_igetitem(self.iter, -(index + 1))
def __reversed__(self):
return self.iter
def __len__(self):
return _coconut.len(self.iter)
def __repr__(self):
return "reversed(%r)" % (self.iter,)
def __hash__(self):
return -_coconut.hash(self.iter)
def __reduce__(self):
return (self.__class__, (self.iter,))
def __copy__(self):
return self.__class__(_coconut.copy.copy(self.iter))
def __eq__(self, other):
return isinstance(other, self.__class__) and self.iter == other.iter
def __contains__(self, elem):
return elem in self.iter
def count(self, elem):
"""Count the number of times elem appears in the reversed iterator."""
return self.iter.count(elem)
def index(self, elem):
"""Find the index of elem in the reversed iterator."""
return _coconut.len(self.iter) - self.iter.index(elem) - 1
def __fmap__(self, func):
return self.__class__(_coconut_map(func, self.iter))
class map(_coconut.map):
__slots__ = ("func", "iters")
if hasattr(_coconut.map, "__doc__"):
__doc__ = _coconut.map.__doc__
def __new__(cls, function, *iterables):
new_map = _coconut.map.__new__(cls, function, *iterables)
new_map.func = function
new_map.iters = iterables
return new_map
def __getitem__(self, index):
if _coconut.isinstance(index, _coconut.slice):
return self.__class__(self.func, *(_coconut_igetitem(i, index) for i in self.iters))
return self.func(*(_coconut_igetitem(i, index) for i in self.iters))
def __reversed__(self):
return self.__class__(self.func, *(_coconut_reversed(i) for i in self.iters))
def __len__(self):
return _coconut.min(_coconut.len(i) for i in self.iters)
def __repr__(self):
return "map(%r, %s)" % (self.func, ", ".join((_coconut.repr(i) for i in self.iters)))
def __reduce__(self):
return (self.__class__, (self.func,) + self.iters)
def __reduce_ex__(self, _):
return self.__reduce__()
def __copy__(self):
return self.__class__(self.func, *_coconut.map(_coconut.copy.copy, self.iters))
def __fmap__(self, func):
return self.__class__(_coconut_forward_compose(self.func, func), *self.iters)
class parallel_map(map):
"""Multi-process implementation of map using concurrent.futures.
Requires arguments to be pickleable."""
__slots__ = ()
def __iter__(self):
from concurrent.futures import ProcessPoolExecutor
with ProcessPoolExecutor() as executor:
return _coconut.iter(_coconut.list(executor.map(self.func, *self.iters)))
def __repr__(self):
return "parallel_" + _coconut_map.__repr__(self)
class concurrent_map(map):
"""Multi-thread implementation of map using concurrent.futures."""
__slots__ = ()
def __iter__(self):
from concurrent.futures import ThreadPoolExecutor
from multiprocessing import cpu_count # cpu_count() * 5 is the default Python 3.5 thread count
with ThreadPoolExecutor(cpu_count() * 5) as executor:
return _coconut.iter(_coconut.list(executor.map(self.func, *self.iters)))
def __repr__(self):
return "concurrent_" + _coconut_map.__repr__(self)
class filter(_coconut.filter):
__slots__ = ("func", "iter")
if hasattr(_coconut.filter, "__doc__"):
__doc__ = _coconut.filter.__doc__
def __new__(cls, function, iterable):
new_filter = _coconut.filter.__new__(cls, function, iterable)
new_filter.func = function
new_filter.iter = iterable
return new_filter
def __reversed__(self):
return self.__class__(self.func, _coconut_reversed(self.iter))
def __repr__(self):
return "filter(%r, %r)" % (self.func, self.iter)
def __reduce__(self):
return (self.__class__, (self.func, self.iter))
def __reduce_ex__(self, _):
return self.__reduce__()
def __copy__(self):
return self.__class__(self.func, _coconut.copy.copy(self.iter))
def __fmap__(self, func):
return _coconut_map(func, self)
class zip(_coconut.zip):
__slots__ = ("iters",)
if hasattr(_coconut.zip, "__doc__"):
__doc__ = _coconut.zip.__doc__
def __new__(cls, *iterables):
new_zip = _coconut.zip.__new__(cls, *iterables)
new_zip.iters = iterables
return new_zip
def __getitem__(self, index):
if _coconut.isinstance(index, _coconut.slice):
return self.__class__(*(_coconut_igetitem(i, index) for i in self.iters))
return _coconut.tuple(_coconut_igetitem(i, index) for i in self.iters)
def __reversed__(self):
return self.__class__(*(_coconut_reversed(i) for i in self.iters))
def __len__(self):
return _coconut.min(_coconut.len(i) for i in self.iters)
def __repr__(self):
return "zip(%s)" % (", ".join((_coconut.repr(i) for i in self.iters)),)
def __reduce__(self):
return (self.__class__, self.iters)
def __reduce_ex__(self, _):
return self.__reduce__()
def __copy__(self):
return self.__class__(*_coconut.map(_coconut.copy.copy, self.iters))
def __fmap__(self, func):
return _coconut_map(func, self)
class enumerate(_coconut.enumerate):
__slots__ = ("iter", "start")
if hasattr(_coconut.enumerate, "__doc__"):
__doc__ = _coconut.enumerate.__doc__
def __new__(cls, iterable, start=0):
new_enumerate = _coconut.enumerate.__new__(cls, iterable, start)
new_enumerate.iter = iterable
new_enumerate.start = start
return new_enumerate
def __getitem__(self, index):
if _coconut.isinstance(index, _coconut.slice):
return self.__class__(_coconut_igetitem(self.iter, index), self.start + (0 if index.start is None else index.start if index.start >= 0 else len(self.iter) + index.start))
return (self.start + index, _coconut_igetitem(self.iter, index))
def __len__(self):
return _coconut.len(self.iter)
def __repr__(self):
return "enumerate(%r, %r)" % (self.iter, self.start)
def __reduce__(self):
return (self.__class__, (self.iter, self.start))
def __reduce_ex__(self, _):
return self.__reduce__()
def __copy__(self):
return self.__class__(_coconut.copy.copy(self.iter), self.start)
def __fmap__(self, func):
return _coconut_map(func, self)
class count(object):
"""count(start, step) returns an infinite iterator starting at start and increasing by step.
If step is set to 0, count will infinitely repeat its first argument."""
__slots__ = ("start", "step")
def __init__(self, start=0, step=1):
self.start = start
self.step = step
def __iter__(self):
while True:
yield self.start
if self.step:
self.start += self.step
def __contains__(self, elem):
if not self.step:
return elem == self.start
if elem < self.start:
return False
return (elem - self.start) % self.step == 0
def __getitem__(self, index):
if _coconut.isinstance(index, _coconut.slice) and (index.start is None or index.start >= 0) and (index.stop is None or index.stop >= 0):
new_start, new_step = self.start, self.step
if self.step and index.start is not None:
new_start += self.step * index.start
if self.step and index.step is not None:
new_step *= index.step
if index.stop is None:
return self.__class__(new_start, new_step)
if self.step and _coconut.isinstance(self.start, _coconut.int) and _coconut.isinstance(self.step, _coconut.int):
return _coconut.range(new_start, self.start + self.step * index.stop, new_step)
return _coconut_map(self.__getitem__, _coconut.range(index.start if index.start is not None else 0, index.stop, index.step if index.step is not None else 1))
if index < 0:
raise _coconut.IndexError("count indices must be positive")
return self.start + self.step * index if self.step else self.start
def count(self, elem):
"""Count the number of times elem appears in the count."""
if not self.step:
return _coconut.float("inf") if elem == self.start else 0
return int(elem in self)
def index(self, elem):
"""Find the index of elem in the count."""
if elem not in self:
raise _coconut.ValueError(_coconut.repr(elem) + " not in " + _coconut.repr(self))
return (elem - self.start) // self.step if self.step else 0
def __reversed__(self):
if not self.step:
return self
raise _coconut.TypeError(repr(self) + " object is not reversible")
def __repr__(self):
return "count(%r, %r)" % (self.start, self.step)
def __hash__(self):
return _coconut.hash((self.start, self.step))
def __reduce__(self):
return (self.__class__, (self.start, self.step))
def __copy__(self):
return self.__class__(self.start, self.step)
def __eq__(self, other):
return isinstance(other, self.__class__) and self.start == other.start and self.step == other.step
def __fmap__(self, func):
return _coconut_map(func, self)
class groupsof(object):
"""groupsof(n, iterable) splits iterable into groups of size n.
If the length of the iterable is not divisible by n, the last group may be of size < n."""
__slots__ = ("group_size", "iter")
def __init__(self, n, iterable):
self.iter = iterable
try:
self.group_size = _coconut.int(n)
except _coconut.ValueError:
raise _coconut.TypeError("group size must be an int; not %r" % (n,))
if self.group_size <= 0:
raise _coconut.ValueError("group size must be > 0; not %r" % (self.group_size,))
def __iter__(self):
iterator = _coconut.iter(self.iter)
loop = True
while loop:
group = []
for _ in _coconut.range(self.group_size):
try:
group.append(_coconut.next(iterator))
except _coconut.StopIteration:
loop = False
break
if group:
yield _coconut.tuple(group)
def __len__(self):
return _coconut.len(self.iter)
def __repr__(self):
return "groupsof(%r)" % (self.iter,)
def __reduce__(self):
return (self.__class__, (self.group_size, self.iter))
def __copy__(self):
return self.__class__(self.group_size, _coconut.copy.copy(self.iter))
def __fmap__(self, func):
return _coconut_map(func, self)
class recursive_iterator(object):
"""Decorator that optimizes a function for iterator recursion."""
__slots__ = ("func", "tee_store", "backup_tee_store")
def __init__(self, func):
self.func = func
self.tee_store = {}
self.backup_tee_store = []
def __call__(self, *args, **kwargs):
key = (args, _coconut.frozenset(kwargs))
use_backup = False
try:
hash(key)
except _coconut.Exception:
try:
key = _coconut.pickle.dumps(key, -1)
except _coconut.Exception:
use_backup = True
if use_backup:
for i, (k, v) in _coconut.enumerate(self.backup_tee_store):
if k == key:
to_tee, store_pos = v, i
break
else: # no break
to_tee = self.func(*args, **kwargs)
store_pos = None
to_store, to_return = _coconut_tee(to_tee)
if store_pos is None:
self.backup_tee_store.append([key, to_store])
else:
self.backup_tee_store[store_pos][1] = to_store
else:
self.tee_store[key], to_return = _coconut_tee(self.tee_store.get(key) or self.func(*args, **kwargs))
return to_return
def __repr__(self):
return "@recursive_iterator(" + _coconut.repr(self.func) + ")"
def __reduce__(self):
return (self.__class__, (self.func,))
def __get__(self, obj, objtype=None):
return _coconut.functools.partial(self, obj)
class _coconut_FunctionMatchErrorContext(object):
__slots__ = ('exc_class', 'taken')
threadlocal_var = _coconut.threading.local()
def __init__(self, exc_class):
self.exc_class = exc_class
self.taken = False
def __enter__(self):
try:
self.threadlocal_var.contexts.append(self)
except _coconut.AttributeError:
self.threadlocal_var.contexts = [self]
def __exit__(self, type, value, traceback):
self.threadlocal_var.contexts.pop()
@classmethod
def get(cls):
try:
ctx = cls.threadlocal_var.contexts[-1]
except (_coconut.AttributeError, _coconut.IndexError):
return _coconut_MatchError
if not ctx.taken:
ctx.taken = True
return ctx.exc_class
return _coconut_MatchError
_coconut_get_function_match_error = _coconut_FunctionMatchErrorContext.get
class _coconut_base_pattern_func(object):
__slots__ = ("FunctionMatchError", "__doc__", "patterns")
_coconut_is_match = True
def __init__(self, *funcs):
self.FunctionMatchError = _coconut.type(_coconut_str("MatchError"), (_coconut_MatchError,), {})
self.__doc__ = None
self.patterns = []
for func in funcs:
self.add(func)
def add(self, func):
self.__doc__ = _coconut.getattr(func, "__doc__", None) or self.__doc__
if _coconut.isinstance(func, _coconut_base_pattern_func):
self.patterns += func.patterns
else:
self.patterns.append(func)
def __call__(self, *args, **kwargs):
for func in self.patterns[:-1]:
try:
with _coconut_FunctionMatchErrorContext(self.FunctionMatchError):
return func(*args, **kwargs)
except self.FunctionMatchError:
pass
return self.patterns[-1](*args, **kwargs)
def _coconut_tco_func(self, *args, **kwargs):
for func in self.patterns[:-1]:
try:
with _coconut_FunctionMatchErrorContext(self.FunctionMatchError):
return func(*args, **kwargs)
except self.FunctionMatchError:
pass
return _coconut_tail_call(self.patterns[-1], *args, **kwargs)
def __repr__(self):
return "addpattern(" + _coconut.repr(self.patterns[0]) + ")(*" + _coconut.repr(self.patterns[1:]) + ")"
def __reduce__(self):
return (self.__class__, _coconut.tuple(self.patterns))
def __get__(self, obj, objtype=None):
if obj is None:
return self
return _coconut.functools.partial(self, obj)
def _coconut_mark_as_match(base_func):
base_func._coconut_is_match = True
return base_func
def addpattern(base_func, **kwargs):
"""Decorator to add a new case to a pattern-matching function,
where the new case is checked last."""
allow_any_func = kwargs.pop("allow_any_func", False)
if not allow_any_func and not _coconut.getattr(base_func, "_coconut_is_match", False):
_coconut.warnings.warn("Possible misuse of addpattern with non-pattern-matching function " + _coconut.repr(base_func) + " (pass allow_any_func=True to dismiss)", stacklevel=2)
if kwargs:
raise _coconut.TypeError("addpattern() got unexpected keyword arguments " + _coconut.repr(kwargs))
return _coconut.functools.partial(_coconut_base_pattern_func, base_func)
_coconut_addpattern = addpattern
def prepattern(base_func, **kwargs):
"""DEPRECATED: Use addpattern instead."""
def pattern_prepender(func):
return addpattern(func, **kwargs)(base_func)
return pattern_prepender
class _coconut_partial(object):
__slots__ = ("func", "_argdict", "_arglen", "_stargs", "keywords")
if hasattr(_coconut.functools.partial, "__doc__"):
__doc__ = _coconut.functools.partial.__doc__
def __init__(self, func, argdict, arglen, *args, **kwargs):
self.func = func
self._argdict = argdict
self._arglen = arglen
self._stargs = args
self.keywords = kwargs
def __reduce__(self):
return (self.__class__, (self.func, self._argdict, self._arglen) + self._stargs, self.keywords)
def __setstate__(self, keywords):
self.keywords = keywords
@property
def args(self):
return _coconut.tuple(self._argdict.get(i) for i in _coconut.range(self._arglen)) + self._stargs
def __call__(self, *args, **kwargs):
callargs = []
argind = 0
for i in _coconut.range(self._arglen):
if i in self._argdict:
callargs.append(self._argdict[i])
elif argind >= _coconut.len(args):
raise _coconut.TypeError("expected at least " + _coconut.str(self._arglen - _coconut.len(self._argdict)) + " argument(s) to " + _coconut.repr(self))
else:
callargs.append(args[argind])
argind += 1
callargs += self._stargs
callargs += args[argind:]
kwargs.update(self.keywords)
return self.func(*callargs, **kwargs)
def __repr__(self):
args = []
for i in _coconut.range(self._arglen):
if i in self._argdict:
args.append(_coconut.repr(self._argdict[i]))
else:
args.append("?")
for arg in self._stargs:
args.append(_coconut.repr(arg))
return _coconut.repr(self.func) + "$(" + ", ".join(args) + ")"
def consume(iterable, keep_last=0):
"""consume(iterable, keep_last) fully exhausts iterable and return the last keep_last elements."""
return _coconut.collections.deque(iterable, maxlen=keep_last)
class starmap(_coconut.itertools.starmap):
__slots__ = ("func", "iter")
if hasattr(_coconut.itertools.starmap, "__doc__"):
__doc__ = _coconut.itertools.starmap.__doc__
def __new__(cls, function, iterable):
new_map = _coconut.itertools.starmap.__new__(cls, function, iterable)
new_map.func = function
new_map.iter = iterable
return new_map
def __getitem__(self, index):
if _coconut.isinstance(index, _coconut.slice):
return self.__class__(self.func, _coconut_igetitem(self.iter, index))
return self.func(*_coconut_igetitem(self.iter, index))
def __reversed__(self):
return self.__class__(self.func, *_coconut_reversed(self.iter))
def __len__(self):
return _coconut.len(self.iter)
def __repr__(self):
return "starmap(%r, %r)" % (self.func, self.iter)
def __reduce__(self):
return (self.__class__, (self.func, self.iter))
def __reduce_ex__(self, _):
return self.__reduce__()
def __copy__(self):
return self.__class__(self.func, _coconut.copy.copy(self.iter))
def __fmap__(self, func):
return self.__class__(_coconut_forward_compose(self.func, func), self.iter)
def makedata(data_type, *args):
"""Construct an object of the given data_type containing the given arguments."""
if _coconut.hasattr(data_type, "_make") and _coconut.issubclass(data_type, _coconut.tuple):
return data_type._make(args)
if _coconut.issubclass(data_type, (_coconut.map, _coconut.range, _coconut.abc.Iterator)):
return args
if _coconut.issubclass(data_type, _coconut.str):
return "".join(args)
return data_type(args)
def datamaker(data_type):
"""DEPRECATED: Use makedata instead."""
return _coconut.functools.partial(makedata, data_type)
def fmap(func, obj):
"""fmap(func, obj) creates a copy of obj with func applied to its contents.
Override by defining obj.__fmap__(func)."""
if _coconut.hasattr(obj, "__fmap__"):
return obj.__fmap__(func)
if obj.__class__.__module__ == "numpy":
from numpy import vectorize
return vectorize(func)(obj)
return _coconut_makedata(obj.__class__, *(_coconut_starmap(func, obj.items()) if _coconut.isinstance(obj, _coconut.abc.Mapping) else _coconut_map(func, obj)))
def memoize(maxsize=None, *args, **kwargs):
"""Decorator that memoizes a function,
preventing it from being recomputed if it is called multiple times with the same arguments."""
return _coconut.functools.lru_cache(maxsize, *args, **kwargs)
_coconut_MatchError, _coconut_count, _coconut_enumerate, _coconut_makedata, _coconut_map, _coconut_reversed, _coconut_starmap, _coconut_tee, _coconut_zip, TYPE_CHECKING, reduce, takewhile, dropwhile = MatchError, count, enumerate, makedata, map, reversed, starmap, tee, zip, False, _coconut.functools.reduce, _coconut.itertools.takewhile, _coconut.itertools.dropwhile