ea5eba5916
As noted in #600, Python 3 allows a return inside a generator method, that raises a StopIteration and passes the return value inside the 'value' attr of the exception. To allow this behaviour we simple set 'contains_yield' while compiling 'yield', thus allowing a return statement, but only for Python 3. Then when compiling the try-except, we check for contains_yield to decide whether there will be a return. This allows code like: (defn gen [] (yield 3) "goodbye") to compile in both Py2 and Py3. The return value is simply ignored in Python 2. hy2py in Python 2 gives: def g(): yield 3L u'goodbye' while hy2py in Python 3 gives: def g(): yield 3 return 'goodbye' Turns out return in yield started in Python 3.3
1009 lines
25 KiB
Hy
1009 lines
25 KiB
Hy
(import [tests.resources [kwtest function-with-a-dash]]
|
|
[os.path [exists isdir isfile]]
|
|
[sys :as systest])
|
|
(import sys)
|
|
|
|
(import [hy._compat [PY33 PY34]])
|
|
|
|
(defn test-sys-argv []
|
|
"NATIVE: test sys.argv"
|
|
;; BTW, this also tests inline comments. Which suck to implement.
|
|
(assert (isinstance sys.argv list)))
|
|
|
|
|
|
(defn test-lists []
|
|
"NATIVE: test lists work right"
|
|
(assert (= [1 2 3 4] (+ [1 2] [3 4]))))
|
|
|
|
|
|
(defn test-dicts []
|
|
"NATIVE: test dicts work right"
|
|
(assert (= {1 2 3 4} {3 4 1 2}))
|
|
(assert (= {1 2 3 4} {1 (+ 1 1) 3 (+ 2 2)})))
|
|
|
|
|
|
(defn test-setv-get []
|
|
"NATIVE: test setv works on a get expression"
|
|
(setv foo [0 1 2])
|
|
(setv (get foo 0) 12)
|
|
(assert (= (get foo 0) 12)))
|
|
|
|
|
|
(defn test-for-loop []
|
|
"NATIVE: test for loops"
|
|
(setv count 0)
|
|
(for [x [1 2 3 4 5]]
|
|
(setv count (+ count x)))
|
|
(assert (= count 15))
|
|
(setv count 0)
|
|
(for [x [1 2 3 4 5]
|
|
y [1 2 3 4 5]]
|
|
(setv count (+ count x y)))
|
|
(assert (= count 150))
|
|
(assert (= (list ((fn [] (for [x [[1] [2 3]] y x] (yield y)))))
|
|
(list-comp y [x [[1] [2 3]] y x])))
|
|
(assert (= (list ((fn [] (for [x [[1] [2 3]] y x z (range 5)] (yield z)))))
|
|
(list-comp z [x [[1] [2 3]] y x z (range 5)]))))
|
|
|
|
|
|
(defn test-nasty-for-nesting []
|
|
"NATIVE: test nesting for loops harder"
|
|
;; This test and feature is dedicated to @nedbat.
|
|
|
|
;; let's ensure empty iterating is an implicit do
|
|
(setv t 0)
|
|
(for [] (setv t 1))
|
|
(assert (= t 1))
|
|
|
|
;; OK. This first test will ensure that the else is hooked up to the
|
|
;; for when we break out of it.
|
|
(for [x (range 2)
|
|
y (range 2)]
|
|
(break)
|
|
(else (throw Exception)))
|
|
|
|
;; OK. This next test will ensure that the else is hooked up to the
|
|
;; "inner" iteration
|
|
(for [x (range 2)
|
|
y (range 2)]
|
|
(if (= y 1) (break))
|
|
(else (throw Exception)))
|
|
|
|
;; OK. This next test will ensure that the else is hooked up to the
|
|
;; "outer" iteration
|
|
(for [x (range 2)
|
|
y (range 2)]
|
|
(if (= x 1) (break))
|
|
(else (throw Exception)))
|
|
|
|
;; OK. This next test will ensure that we call the else branch exactly
|
|
;; once.
|
|
(setv flag 0)
|
|
(for [x (range 2)
|
|
y (range 2)]
|
|
(+ 1 1)
|
|
(else (setv flag (+ flag 2))))
|
|
(assert (= flag 2)))
|
|
|
|
|
|
(defn test-while-loop []
|
|
"NATIVE: test while loops?"
|
|
(setv count 5)
|
|
(setv fact 1)
|
|
(while (> count 0)
|
|
(setv fact (* fact count))
|
|
(setv count (- count 1)))
|
|
(assert (= count 0))
|
|
(assert (= fact 120)))
|
|
|
|
|
|
(defn test-not []
|
|
"NATIVE: test not"
|
|
(assert (not (= 1 2)))
|
|
(assert (= true (not false)))
|
|
(assert (= false (not 42))) )
|
|
|
|
|
|
(defn test-inv []
|
|
"NATIVE: test inv"
|
|
(assert (= (~ 1) -2))
|
|
(assert (= (~ -2) 1)))
|
|
|
|
|
|
(defn test-in []
|
|
"NATIVE: test in"
|
|
(assert (in "a" ["a" "b" "c" "d"]))
|
|
(assert (not-in "f" ["a" "b" "c" "d"])))
|
|
|
|
|
|
(defn test-noteq []
|
|
"NATIVE: not eq"
|
|
(assert (!= 2 3)))
|
|
|
|
|
|
(defn test-numops []
|
|
"NATIVE: test numpos"
|
|
(assert (> 5 4 3 2 1))
|
|
(assert (< 1 2 3 4 5))
|
|
(assert (<= 5 5 5 5 ))
|
|
(assert (>= 5 5 5 5 )))
|
|
|
|
|
|
(defn test-is []
|
|
"NATIVE: test is can deal with None"
|
|
(setv a nil)
|
|
(assert (is a nil))
|
|
(assert (is-not a "b"))
|
|
(assert (none? a)))
|
|
|
|
|
|
(defn test-branching []
|
|
"NATIVE: test if branching"
|
|
(if true
|
|
(assert (= 1 1))
|
|
(assert (= 2 1))))
|
|
|
|
|
|
(defn test-branching-with-do []
|
|
"NATIVE: test if branching (multiline)"
|
|
(if false
|
|
(assert (= 2 1))
|
|
(do
|
|
(assert (= 1 1))
|
|
(assert (= 1 1))
|
|
(assert (= 1 1)))))
|
|
|
|
(defn test-branching-expr-count-with-do []
|
|
"NATIVE: make sure we execute the right number of expressions in the branch"
|
|
(setv counter 0)
|
|
(if false
|
|
(assert (= 2 1))
|
|
(do
|
|
(setv counter (+ counter 1))
|
|
(setv counter (+ counter 1))
|
|
(setv counter (+ counter 1))))
|
|
(assert (= counter 3)))
|
|
|
|
|
|
(defn test-cond []
|
|
"NATIVE: test if cond sorta works."
|
|
(cond
|
|
[(= 1 2) (assert (is true false))]
|
|
[(is null null) (assert (is true true))]))
|
|
|
|
|
|
(defn test-index []
|
|
"NATIVE: Test that dict access works"
|
|
(assert (= (get {"one" "two"} "one") "two"))
|
|
(assert (= (get [1 2 3 4 5] 1) 2))
|
|
(assert (= (get {"first" {"second" {"third" "level"}}}
|
|
"first" "second" "third")
|
|
"level"))
|
|
(assert (= (get ((fn [] {"first" {"second" {"third" "level"}}}))
|
|
"first" "second" "third")
|
|
"level"))
|
|
(assert (= (get {"first" {"second" {"third" "level"}}}
|
|
((fn [] "first")) "second" "third")
|
|
"level")))
|
|
|
|
|
|
(defn test-lambda []
|
|
"NATIVE: test lambda operator"
|
|
(setv square (lambda [x] (* x x)))
|
|
(assert (= 4 (square 2)))
|
|
(setv lambda_list (lambda [test &rest args] (, test args)))
|
|
(assert (= (, 1 (, 2 3)) (lambda_list 1 2 3))))
|
|
|
|
|
|
(defn test-imported-bits []
|
|
"NATIVE: test the imports work"
|
|
(assert (is (exists ".") true))
|
|
(assert (is (isdir ".") true))
|
|
(assert (is (isfile ".") false)))
|
|
|
|
|
|
(defn test-kwargs []
|
|
"NATIVE: test kwargs things."
|
|
(assert (= (apply kwtest [] {"one" "two"}) {"one" "two"}))
|
|
(setv mydict {"one" "three"})
|
|
(assert (= (apply kwtest [] mydict) mydict))
|
|
(assert (= (apply kwtest [] ((fn [] {"one" "two"}))) {"one" "two"})))
|
|
|
|
|
|
(defn test-apply []
|
|
"NATIVE: test working with args and functions"
|
|
(defn sumit [a b c] (+ a b c))
|
|
(assert (= (apply sumit [1] {"b" 2 "c" 3}) 6))
|
|
(assert (= (apply sumit [1 2 2]) 5))
|
|
(assert (= (apply sumit [] {"a" 1 "b" 1 "c" 2}) 4))
|
|
(assert (= (apply sumit ((fn [] [1 1])) {"c" 1}) 3))
|
|
(defn noargs [] [1 2 3])
|
|
(assert (= (apply noargs) [1 2 3])))
|
|
|
|
|
|
(defn test-apply-with-methods []
|
|
"NATIVE: test apply to call a method"
|
|
(setv str "foo {bar}")
|
|
(assert (= (apply .format [str] {"bar" "baz"})
|
|
(apply .format ["foo {0}" "baz"])
|
|
"foo baz"))
|
|
(setv lst ["a {0} {1} {foo} {bar}" "b" "c"])
|
|
(assert (= (apply .format lst {"foo" "d" "bar" "e"})
|
|
"a b c d e")))
|
|
|
|
|
|
(defn test-dotted []
|
|
"NATIVE: test dotted invocation"
|
|
(assert (= (.join " " ["one" "two"]) "one two")))
|
|
|
|
|
|
(defn test-do []
|
|
"NATIVE: test do"
|
|
(do))
|
|
|
|
(defn test-bare-try [] (try
|
|
(try (raise ValueError))
|
|
(except [ValueError])
|
|
(else (assert false))))
|
|
|
|
|
|
(defn test-exceptions []
|
|
"NATIVE: test Exceptions"
|
|
|
|
(try)
|
|
|
|
(try (do))
|
|
|
|
(try (do))
|
|
|
|
(try (do) (except))
|
|
|
|
(try (do) (except [IOError]) (except))
|
|
|
|
;; Test correct (raise)
|
|
(let [[passed false]]
|
|
(try
|
|
(try
|
|
(raise IndexError)
|
|
(except [IndexError] (raise)))
|
|
(except [IndexError]
|
|
(setv passed true)))
|
|
(assert passed))
|
|
|
|
;; Test incorrect (raise)
|
|
(let [[passed false]]
|
|
(try
|
|
(raise)
|
|
;; Python 2 raises TypeError
|
|
;; Python 3 raises RuntimeError
|
|
(except [[TypeError RuntimeError]]
|
|
(setv passed true)))
|
|
(assert passed))
|
|
|
|
|
|
;; Test (finally)
|
|
(let [[passed false]]
|
|
(try
|
|
(do)
|
|
(finally (setv passed true)))
|
|
(assert passed))
|
|
|
|
;; Test (finally) + (raise)
|
|
(let [[passed false]]
|
|
(try
|
|
(raise Exception)
|
|
(except)
|
|
(finally (setv passed true)))
|
|
(assert passed))
|
|
|
|
|
|
;; Test (finally) + (raise) + (else)
|
|
(let [[passed false]
|
|
[not-elsed true]]
|
|
(try
|
|
(raise Exception)
|
|
(except)
|
|
(else (setv not-elsed false))
|
|
(finally (setv passed true)))
|
|
(assert passed)
|
|
(assert not-elsed))
|
|
|
|
(try
|
|
(raise (KeyError))
|
|
(catch [[IOError]] (assert false))
|
|
(catch [e [KeyError]] (assert e)))
|
|
|
|
(try
|
|
(throw (KeyError))
|
|
(except [[IOError]] (assert false))
|
|
(catch [e [KeyError]] (assert e)))
|
|
|
|
(try
|
|
(get [1] 3)
|
|
(catch [IndexError] (assert true))
|
|
(except [IndexError] (do)))
|
|
|
|
(try
|
|
(print foobar42ofthebaz)
|
|
(catch [IndexError] (assert false))
|
|
(except [NameError] (do)))
|
|
|
|
(try
|
|
(get [1] 3)
|
|
(except [e IndexError] (assert (isinstance e IndexError))))
|
|
|
|
(try
|
|
(get [1] 3)
|
|
(catch [e [IndexError NameError]] (assert (isinstance e IndexError))))
|
|
|
|
(try
|
|
(print foobar42ofthebaz)
|
|
(except [e [IndexError NameError]] (assert (isinstance e NameError))))
|
|
|
|
(try
|
|
(print foobar42)
|
|
(catch [[IndexError NameError]] (do)))
|
|
|
|
(try
|
|
(get [1] 3)
|
|
(catch [[IndexError NameError]] (do)))
|
|
|
|
(try
|
|
(print foobar42ofthebaz)
|
|
(catch))
|
|
|
|
(try
|
|
(print foobar42ofthebaz)
|
|
(except []))
|
|
|
|
(try
|
|
(print foobar42ofthebaz)
|
|
(except [] (do)))
|
|
|
|
(try
|
|
(print foobar42ofthebaz)
|
|
(catch []
|
|
(setv foobar42ofthebaz 42)
|
|
(assert (= foobar42ofthebaz 42))))
|
|
|
|
(let [[passed false]]
|
|
(try
|
|
(try (do) (except) (else (bla)))
|
|
(except [NameError] (setv passed true)))
|
|
(assert passed))
|
|
|
|
(let [[x 0]]
|
|
(try
|
|
(raise IOError)
|
|
(except [IOError]
|
|
(setv x 45))
|
|
(else (setv x 44)))
|
|
(assert (= x 45)))
|
|
|
|
(let [[x 0]]
|
|
(try
|
|
(raise KeyError)
|
|
(except []
|
|
(setv x 45))
|
|
(else (setv x 44)))
|
|
(assert (= x 45)))
|
|
|
|
(let [[x 0]]
|
|
(try
|
|
(try
|
|
(raise KeyError)
|
|
(except [IOError]
|
|
(setv x 45))
|
|
(else (setv x 44)))
|
|
(except))
|
|
(assert (= x 0))))
|
|
|
|
(defn test-earmuffs []
|
|
"NATIVE: Test earmuffs"
|
|
(setv *foo* "2")
|
|
(setv foo "3")
|
|
(assert (= *foo* FOO))
|
|
(assert (!= *foo* foo)))
|
|
|
|
|
|
(defn test-threading []
|
|
"NATIVE: test threading macro"
|
|
(assert (= (-> (.upper "a b c d") (.replace "A" "X") (.split))
|
|
["X" "B" "C" "D"])))
|
|
|
|
|
|
(defn test-tail-threading []
|
|
"NATIVE: test tail threading macro"
|
|
(assert (= (.join ", " (* 10 ["foo"]))
|
|
(->> ["foo"] (* 10) (.join ", ")))))
|
|
|
|
|
|
(defn test-threading-two []
|
|
"NATIVE: test threading macro"
|
|
(assert (= (-> "a b c d" .upper (.replace "A" "X") .split)
|
|
["X" "B" "C" "D"])))
|
|
|
|
|
|
(defn test-assoc []
|
|
"NATIVE: test assoc"
|
|
(setv vals {"one" "two"})
|
|
(assoc vals "two" "three")
|
|
(assert (= (get vals "two") "three")))
|
|
|
|
(defn test-multiassoc []
|
|
"NATIVE: test assoc multiple values"
|
|
(setv vals {"one" "two"})
|
|
(assoc vals "two" "three" "four" "five")
|
|
(assert (and (= (get vals "two") "three") (= (get vals "four") "five") (= (get vals "one") "two"))))
|
|
|
|
(defn test-pass []
|
|
"NATIVE: Test pass worksish"
|
|
(if true (do) (do))
|
|
(assert (= 1 1)))
|
|
|
|
|
|
(defn test-yield []
|
|
"NATIVE: test yielding"
|
|
(defn gen [] (for [x [1 2 3 4]] (yield x)))
|
|
(setv ret 0)
|
|
(for [y (gen)] (setv ret (+ ret y)))
|
|
(assert (= ret 10)))
|
|
|
|
(defn test-yield-with-return []
|
|
"NATIVE: test yield with return"
|
|
(defn gen [] (yield 3) "goodbye")
|
|
(if PY33
|
|
(do (setv gg (gen))
|
|
(assert (= 3 (next gg)))
|
|
(try (next gg)
|
|
(except [e StopIteration] (assert (hasattr e "value"))
|
|
(assert (= (getattr e "value") "goodbye")))))
|
|
(do (setv gg (gen))
|
|
(assert (= 3 (next gg)))
|
|
(try (next gg)
|
|
(except [e StopIteration] (assert (not (hasattr e "value"))))))))
|
|
|
|
|
|
(defn test-yield-in-try []
|
|
"NATIVE: test yield in try"
|
|
(defn gen []
|
|
(let [[x 1]]
|
|
(try (yield x)
|
|
(finally (print x)))))
|
|
(setv output (list (gen)))
|
|
(assert (= [1] output)))
|
|
|
|
(defn test-first []
|
|
"NATIVE: test firsty things"
|
|
(assert (= (first [1 2 3 4 5]) 1))
|
|
(assert (= (car [1 2 3 4 5]) 1)))
|
|
|
|
|
|
(defn test-slice []
|
|
"NATIVE: test slice"
|
|
(assert (= (slice [1 2 3 4 5] 1) [2 3 4 5]))
|
|
(assert (= (slice [1 2 3 4 5] 1 3) [2 3]))
|
|
(assert (= (slice [1 2 3 4 5]) [1 2 3 4 5])))
|
|
|
|
|
|
(defn test-take []
|
|
"NATIVE: test take"
|
|
(assert (= (take 0 [2 3]) []))
|
|
(assert (= (take 1 [2 3]) [2]))
|
|
(assert (= (take 2 [2 3]) [2 3])))
|
|
|
|
|
|
(defn test-drop []
|
|
"NATIVE: test drop"
|
|
(assert (= (list (drop 0 [2 3])) [2 3]))
|
|
(assert (= (list (drop 1 [2 3])) [3]))
|
|
(assert (= (list (drop 2 [2 3])) [])))
|
|
|
|
|
|
(defn test-rest []
|
|
"NATIVE: test rest"
|
|
(assert (= (list (rest [1 2 3 4 5])) [2 3 4 5])))
|
|
|
|
|
|
(defn test-importas []
|
|
"NATIVE: test import as"
|
|
(assert (!= (len systest.path) 0)))
|
|
|
|
|
|
(defn test-context []
|
|
"NATIVE: test with"
|
|
(with [[fd (open "README.md" "r")]] (assert fd))
|
|
(with [[(open "README.md" "r")]] (do)))
|
|
|
|
|
|
(defn test-with-return []
|
|
"NATIVE: test that with returns stuff"
|
|
(defn read-file [filename]
|
|
(with [[fd (open filename "r")]] (.read fd)))
|
|
(assert (!= 0 (len (read-file "README.md")))))
|
|
|
|
|
|
(defn test-for-doodle []
|
|
"NATIVE: test for-do"
|
|
(do (do (do (do (do (do (do (do (do (setv (, x y) (, 0 0)))))))))))
|
|
(for [- [1 2]]
|
|
(do
|
|
(setv x (+ x 1))
|
|
(setv y (+ y 1))))
|
|
(assert (= y x 2)))
|
|
|
|
|
|
(defn test-for-else []
|
|
"NATIVE: test for else"
|
|
(let [[x 0]]
|
|
(for* [a [1 2]]
|
|
(setv x (+ x a))
|
|
(else (setv x (+ x 50))))
|
|
(assert (= x 53)))
|
|
|
|
(let [[x 0]]
|
|
(for* [a [1 2]]
|
|
(setv x (+ x a))
|
|
(else))
|
|
(assert (= x 3))))
|
|
|
|
|
|
(defn test-list-comprehensions []
|
|
"NATIVE: test list comprehensions"
|
|
(assert (= (list-comp (* x 2) (x (range 2))) [0 2]))
|
|
(assert (= (list-comp (* x 2) (x (range 4)) (% x 2)) [2 6]))
|
|
(assert (= (sorted (list-comp (* y 2) ((, x y) (.items {"1" 1 "2" 2}))))
|
|
[2 4]))
|
|
(assert (= (list-comp (, x y) (x (range 2) y (range 2)))
|
|
[(, 0 0) (, 0 1) (, 1 0) (, 1 1)]))
|
|
(assert (= (list-comp j (j [1 2])) [1 2])))
|
|
|
|
|
|
(defn test-set-comprehensions []
|
|
"NATIVE: test set comprehensions"
|
|
(assert (instance? set (set-comp x [x (range 2)])))
|
|
(assert (= (set-comp (* x 2) (x (range 2))) (set [0 2])))
|
|
(assert (= (set-comp (* x 2) (x (range 4)) (% x 2)) (set [2 6])))
|
|
(assert (= (set-comp (* y 2) ((, x y) (.items {"1" 1 "2" 2})))
|
|
(set [2 4])))
|
|
(assert (= (set-comp (, x y) (x (range 2) y (range 2)))
|
|
(set [(, 0 0) (, 0 1) (, 1 0) (, 1 1)])))
|
|
(assert (= (set-comp j (j [1 2])) (set [1 2]))))
|
|
|
|
|
|
(defn test-dict-comprehensions []
|
|
"NATIVE: test dict comprehensions"
|
|
(assert (instance? dict (dict-comp x x [x (range 2)])))
|
|
(assert (= (dict-comp x (* x 2) (x (range 2))) {1 2 0 0}))
|
|
(assert (= (dict-comp x (* x 2) (x (range 4)) (% x 2)) {3 6 1 2}))
|
|
(assert (= (dict-comp x (* y 2) ((, x y) (.items {"1" 1 "2" 2})))
|
|
{"2" 4 "1" 2}))
|
|
(assert (= (dict-comp (, x y) (+ x y) (x (range 2) y (range 2)))
|
|
{(, 0 0) 0 (, 1 0) 1 (, 0 1) 1 (, 1 1) 2})))
|
|
|
|
|
|
(defn test-generator-expressions []
|
|
"NATIVE: test generator expressions"
|
|
(assert (not (instance? list (genexpr x [x (range 2)]))))
|
|
(assert (= (list (genexpr (* x 2) (x (range 2)))) [0 2]))
|
|
(assert (= (list (genexpr (* x 2) (x (range 4)) (% x 2))) [2 6]))
|
|
(assert (= (list (sorted (genexpr (* y 2) ((, x y) (.items {"1" 1 "2" 2})))))
|
|
[2 4]))
|
|
(assert (= (list (genexpr (, x y) (x (range 2) y (range 2))))
|
|
[(, 0 0) (, 0 1) (, 1 0) (, 1 1)]))
|
|
(assert (= (list (genexpr j (j [1 2]))) [1 2])))
|
|
|
|
|
|
(defn test-defn-order []
|
|
"NATIVE: test defn evaluation order"
|
|
(setv acc [])
|
|
(defn my-fun []
|
|
(.append acc "Foo")
|
|
(.append acc "Bar")
|
|
(.append acc "Baz"))
|
|
(my-fun)
|
|
(assert (= acc ["Foo" "Bar" "Baz"])))
|
|
|
|
|
|
(defn test-defn-return []
|
|
"NATIVE: test defn return"
|
|
(defn my-fun [x]
|
|
(+ x 1))
|
|
(assert (= 43 (my-fun 42))))
|
|
|
|
|
|
(defn test-defn-do []
|
|
"NATIVE: test defn evaluation order with do"
|
|
(setv acc [])
|
|
(defn my-fun []
|
|
(do
|
|
(.append acc "Foo")
|
|
(.append acc "Bar")
|
|
(.append acc "Baz")))
|
|
(my-fun)
|
|
(assert (= acc ["Foo" "Bar" "Baz"])))
|
|
|
|
|
|
(defn test-defn-do-return []
|
|
"NATIVE: test defn return with do"
|
|
(defn my-fun [x]
|
|
(do
|
|
(+ x 42) ; noop
|
|
(+ x 1)))
|
|
(assert (= 43 (my-fun 42))))
|
|
|
|
|
|
(defn test-mangles []
|
|
"NATIVE: test mangles"
|
|
(assert (= 2 ((fn [] (+ 1 1))))))
|
|
|
|
|
|
(defn test-fn-return []
|
|
"NATIVE: test function return"
|
|
(setv fn-test ((fn [] (fn [] (+ 1 1)))))
|
|
(assert (= (fn-test) 2))
|
|
(setv fn-test (fn []))
|
|
(assert (= (fn-test) None)))
|
|
|
|
|
|
(defn test-let []
|
|
"NATIVE: test let works rightish"
|
|
(assert (= (let [[x 1] [y 2] [z 3]] (+ x y z)) 6))
|
|
(assert (= (let [[x 1] a [y 2] b] (if a 1 2)) 2)))
|
|
|
|
|
|
(defn test-if-mangler []
|
|
"NATIVE: test that we return ifs"
|
|
(assert (= true (if true true true))))
|
|
|
|
|
|
(defn test-nested-mangles []
|
|
"NATIVE: test that we can use macros in mangled code"
|
|
(assert (= ((fn [] (-> 2 (+ 1 1) (* 1 2)))) 8)))
|
|
|
|
|
|
(defn test-let-scope []
|
|
"NATIVE: test let works rightish"
|
|
(setv y 123)
|
|
(assert (= (let [[x 1]
|
|
[y 2]
|
|
[z 3]]
|
|
(+ x y z))
|
|
6))
|
|
(try
|
|
(assert (= x 42)) ; This ain't true
|
|
(catch [e [NameError]] (assert e)))
|
|
(assert (= y 123)))
|
|
|
|
|
|
(defn test-symbol-utf-8 []
|
|
"NATIVE: test symbol encoded"
|
|
(let [[♥ "love"]
|
|
[⚘ "flower"]]
|
|
(assert (= (+ ⚘ ♥) "flowerlove"))))
|
|
|
|
|
|
(defn test-symbol-dash []
|
|
"NATIVE: test symbol encoded"
|
|
(let [[♥-♥ "doublelove"]
|
|
[-_- "what?"]]
|
|
(assert (= ♥-♥ "doublelove"))
|
|
(assert (= -_- "what?"))))
|
|
|
|
|
|
(defn test-symbol-question-mark []
|
|
"NATIVE: test foo? -> is_foo behavior"
|
|
(let [[foo? "nachos"]]
|
|
(assert (= is_foo "nachos"))))
|
|
|
|
|
|
(defn test-and []
|
|
"NATIVE: test the and function"
|
|
(let [[and123 (and 1 2 3)]
|
|
[and-false (and 1 False 3)]]
|
|
(assert (= and123 3))
|
|
(assert (= and-false False))))
|
|
|
|
|
|
(defn test-or []
|
|
"NATIVE: test the or function"
|
|
(let [[or-all-true (or 1 2 3 True "string")]
|
|
[or-some-true (or False "hello")]
|
|
[or-none-true (or False False)]]
|
|
(assert (= or-all-true 1))
|
|
(assert (= or-some-true "hello"))
|
|
(assert (= or-none-true False))))
|
|
|
|
|
|
(defn test-if-return-branching []
|
|
"NATIVE: test the if return branching"
|
|
; thanks, algernon
|
|
(assert (= 1 (let [[x 1]
|
|
[y 2]]
|
|
(if true
|
|
2)
|
|
1)))
|
|
(assert (= 1 (let [[x 1] [y 2]]
|
|
(do)
|
|
(do)
|
|
((fn [] 1))))))
|
|
|
|
|
|
(defn test-keyword []
|
|
"NATIVE: test if keywords are recognised"
|
|
|
|
(assert (= :foo :foo))
|
|
(assert (= (get {:foo "bar"} :foo) "bar"))
|
|
(assert (= (get {:bar "quux"} (get {:foo :bar} :foo)) "quux")))
|
|
|
|
(defn test-keyword-clash []
|
|
"NATIVE: test that keywords do not clash with normal strings"
|
|
|
|
(assert (= (get {:foo "bar" ":foo" "quux"} :foo) "bar"))
|
|
(assert (= (get {:foo "bar" ":foo" "quux"} ":foo") "quux")))
|
|
|
|
(defn test-nested-if []
|
|
"NATIVE: test nested if"
|
|
(for [x (range 10)]
|
|
(if (in "foo" "foobar")
|
|
(do
|
|
(if true true true))
|
|
(do
|
|
(if false false false)))))
|
|
|
|
|
|
(defn test-eval []
|
|
"NATIVE: test eval"
|
|
(assert (= 2 (eval (quote (+ 1 1)))))
|
|
(setv x 2)
|
|
(assert (= 4 (eval (quote (+ x 2)))))
|
|
(setv test-payload (quote (+ x 2)))
|
|
(setv x 4)
|
|
(assert (= 6 (eval test-payload)))
|
|
(assert (= 9 ((eval (quote (fn [x] (+ 3 3 x)))) 3)))
|
|
(assert (= 1 (eval (quote 1))))
|
|
(assert (= "foobar" (eval (quote "foobar"))))
|
|
(setv x (quote 42))
|
|
(assert (= x (eval x)))
|
|
(assert (= 27 (eval (+ (quote (*)) (* [(quote 3)] 3)))))
|
|
(assert (= None (eval (quote (print ""))))))
|
|
|
|
|
|
(defn test-import-syntax []
|
|
"NATIVE: test the import syntax."
|
|
|
|
;; Simple import
|
|
(import sys os)
|
|
|
|
;; from os.path import basename
|
|
(import [os.path [basename]])
|
|
(assert (= (basename "/some/path") "path"))
|
|
|
|
;; import os.path as p
|
|
(import [os.path :as p])
|
|
(assert (= p.basename basename))
|
|
|
|
;; from os.path import basename as bn
|
|
(import [os.path [basename :as bn]])
|
|
(assert (= bn basename))
|
|
|
|
(import [sys])
|
|
|
|
;; Multiple stuff to import
|
|
(import sys [os.path [dirname]]
|
|
[os.path :as op]
|
|
[os.path [dirname :as dn]])
|
|
(assert (= (dirname "/some/path") "/some"))
|
|
(assert (= op.dirname dirname))
|
|
(assert (= dn dirname)))
|
|
|
|
|
|
(defn test-lambda-keyword-lists []
|
|
"NATIVE: test lambda keyword lists"
|
|
(defn foo (x &rest xs &kwargs kw) [x xs kw])
|
|
(assert (= (foo 10 20 30) [10 (, 20 30) {}])))
|
|
|
|
|
|
(defn test-key-arguments []
|
|
"NATIVE: test &key function arguments"
|
|
(defn foo [&key {"a" None "b" 1}] [a b])
|
|
(assert (= (foo) [None 1]))
|
|
(assert (= (apply foo [] {"a" 2}) [2 1]))
|
|
(assert (= (apply foo [] {"b" 42}) [None 42])))
|
|
|
|
|
|
(defn test-optional-arguments []
|
|
"NATIVE: test &optional function arguments"
|
|
(defn foo [a b &optional c [d 42]] [a b c d])
|
|
(assert (= (foo 1 2) [1 2 None 42]))
|
|
(assert (= (foo 1 2 3) [1 2 3 42]))
|
|
(assert (= (foo 1 2 3 4) [1 2 3 4])))
|
|
|
|
|
|
(defn test-undefined-name []
|
|
"NATIVE: test that undefined names raise errors"
|
|
(try
|
|
(do
|
|
xxx
|
|
(assert False))
|
|
(except [NameError])))
|
|
|
|
(defn test-if-let-mixing []
|
|
"NATIVE: test that we can now mix if and let"
|
|
(assert (= 0 (if true (let [[x 0]] x) 42))))
|
|
|
|
(defn test-if-in-if []
|
|
"NATIVE: test that we can use if in if"
|
|
(assert (= 42
|
|
(if (if 1 True False)
|
|
42
|
|
43)))
|
|
(assert (= 43
|
|
(if (if 0 True False)
|
|
42
|
|
43))))
|
|
|
|
|
|
(defn test-try-except-return []
|
|
"NATIVE: test we can return from in a try except"
|
|
(assert (= ((fn [] (try xxx (except [NameError] (+ 1 1))))) 2))
|
|
(setv foo (try xxx (except [NameError] (+ 1 1))))
|
|
(assert (= foo 2))
|
|
(setv foo (try (+ 2 2) (except [NameError] (+ 1 1))))
|
|
(assert (= foo 4)))
|
|
|
|
|
|
(defn test-require []
|
|
"NATIVE: test requiring macros from python code"
|
|
(try
|
|
(assert (= "this won't happen" (qplah 1 2 3 4)))
|
|
(catch [NameError]))
|
|
(require tests.resources.tlib)
|
|
(assert (= [1 2 3] (qplah 1 2 3))))
|
|
|
|
|
|
(defn test-require-native []
|
|
"NATIVE: test requiring macros from native code"
|
|
(assert (= "failure"
|
|
(try
|
|
(do (setv x [])
|
|
(rev (.append x 1) (.append x 2) (.append x 3))
|
|
(assert (= x [3 2 1]))
|
|
"success")
|
|
(except [NameError] "failure"))))
|
|
(import tests.native_tests.native_macros)
|
|
(assert (= "failure"
|
|
(try
|
|
(do (setv x [])
|
|
(rev (.append x 1) (.append x 2) (.append x 3))
|
|
(assert (= x [3 2 1]))
|
|
"success")
|
|
(except [NameError] "failure"))))
|
|
(require tests.native_tests.native_macros)
|
|
(assert (= "success"
|
|
(try
|
|
(do (setv x [])
|
|
(rev (.append x 1) (.append x 2) (.append x 3))
|
|
(assert (= x [3 2 1]))
|
|
"success")
|
|
(except [NameError] "failure")))))
|
|
|
|
|
|
(defn test-encoding-nightmares []
|
|
"NATIVE: test unicode encoding escaping crazybits"
|
|
(assert (= (len "ℵℵℵ♥♥♥\t♥♥\r\n") 11)))
|
|
|
|
|
|
(defn test-keyword-dict-access []
|
|
"NATIVE: test keyword dict access"
|
|
(assert (= "test" (:foo {:foo "test"}))))
|
|
|
|
|
|
(defn test-take []
|
|
"NATIVE: test the take operator"
|
|
(assert (= [1 2 3] (list (take 3 [1 2 3]))))
|
|
(assert (= [1 2 3] (list (take 4 [1 2 3]))))
|
|
(assert (= [1 2] (list (take 2 [1 2 4])))))
|
|
|
|
|
|
(defn test-break-breaking []
|
|
"NATIVE: test checking if break actually breaks"
|
|
(defn holy-grail [] (for [x (range 10)] (if (= x 5) (break))) x)
|
|
(assert (= (holy-grail) 5)))
|
|
|
|
|
|
(defn test-continue-continuation []
|
|
"NATIVE: test checking if continue actually continues"
|
|
(setv y [])
|
|
(for [x (range 10)]
|
|
(if (!= x 5)
|
|
(continue))
|
|
(.append y x))
|
|
(assert (= y [5])))
|
|
|
|
|
|
(defn test-empty-list []
|
|
"Evaluate an empty list to a []"
|
|
(assert (= () [])))
|
|
|
|
|
|
(defn test-string []
|
|
(assert (string? (string "a")))
|
|
(assert (string? (string 1)))
|
|
(assert (= u"unicode" (string "unicode"))))
|
|
|
|
(defn test-del []
|
|
"NATIVE: Test the behavior of del"
|
|
(setv foo 42)
|
|
(assert (= foo 42))
|
|
(del foo)
|
|
(assert (= 'good
|
|
(try
|
|
(do foo 'bad)
|
|
(except [NameError] 'good))))
|
|
(setv test (list (range 5)))
|
|
(del (get test 4))
|
|
(assert (= test [0 1 2 3]))
|
|
(del (get test 2))
|
|
(assert (= test [0 1 3])))
|
|
|
|
|
|
(defn test-macroexpand []
|
|
"Test macroexpand on ->"
|
|
(assert (= (macroexpand '(-> (a b) (x y)))
|
|
'(x (a b) y)))
|
|
(assert (= (macroexpand '(-> (a b) (-> (c d) (e f))))
|
|
'(e (c (a b) d) f))))
|
|
|
|
|
|
(defn test-macroexpand-1 []
|
|
"Test macroexpand-1 on ->"
|
|
(assert (= (macroexpand-1 '(-> (a b) (-> (c d) (e f))))
|
|
'(-> (a b) (c d) (e f)))))
|
|
|
|
|
|
(defn test-calling-module-name []
|
|
"NATIVE: Test the calling-module-name function"
|
|
(assert (= (calling-module-name -1) "hy.core.language"))
|
|
(assert (= (calling-module-name 0) "tests.native_tests.language")))
|
|
|
|
|
|
(defn test-disassemble []
|
|
"NATIVE: Test the disassemble function"
|
|
(assert (= (disassemble '(do (leaky) (leaky) (macros)))
|
|
"Module(\n body=[\n Expr(value=Call(func=Name(id='leaky'), args=[], keywords=[], starargs=None, kwargs=None)),\n Expr(value=Call(func=Name(id='leaky'), args=[], keywords=[], starargs=None, kwargs=None)),\n Expr(value=Call(func=Name(id='macros'), args=[], keywords=[], starargs=None, kwargs=None))])"))
|
|
(assert (= (disassemble '(do (leaky) (leaky) (macros)) true)
|
|
"leaky()\nleaky()\nmacros()")))
|
|
|
|
|
|
(defn test-attribute-access []
|
|
"NATIVE: Test the attribute access DSL"
|
|
(defclass mycls [object])
|
|
|
|
(setv foo [(mycls) (mycls) (mycls)])
|
|
(assert (is (. foo) foo))
|
|
(assert (is (. foo [0]) (get foo 0)))
|
|
(assert (is (. foo [0] --class--) mycls))
|
|
(assert (is (. foo [1] --class--) mycls))
|
|
(assert (is (. foo [(+ 1 1)] --class--) mycls))
|
|
(assert (= (. foo [(+ 1 1)] --class-- --name-- [0]) "m"))
|
|
(assert (= (. foo [(+ 1 1)] --class-- --name-- [1]) "y"))
|
|
|
|
(setv bar (mycls))
|
|
(setv (. foo [1]) bar)
|
|
(assert (is bar (get foo 1)))
|
|
(setv (. foo [1] test) "hello")
|
|
(assert (= (getattr (. foo [1]) "test") "hello")))
|
|
|
|
(defn test-keyword-quoting []
|
|
"NATIVE: test keyword quoting magic"
|
|
(assert (= :foo "\ufdd0:foo"))
|
|
(assert (= `:foo "\ufdd0:foo")))
|
|
|
|
(defn test-only-parse-lambda-list-in-defn []
|
|
"NATIVE: test lambda lists are only parsed in defn"
|
|
(try
|
|
(foo [&rest spam] 1)
|
|
(catch [NameError] True)
|
|
(else (raise AssertionError))))
|