hy/hy/compiler.py
2013-08-10 20:23:11 -04:00

1888 lines
63 KiB
Python

# -*- encoding: utf-8 -*-
#
# Copyright (c) 2013 Paul Tagliamonte <paultag@debian.org>
# Copyright (c) 2013 Julien Danjou <julien@danjou.info>
# Copyright (c) 2013 Nicolas Dandrimont <nicolas.dandrimont@crans.org>
# Copyright (c) 2013 James King <james@agentultra.com>
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
from hy.errors import HyError
from hy.models.lambdalist import HyLambdaListKeyword
from hy.models.expression import HyExpression
from hy.models.keyword import HyKeyword
from hy.models.integer import HyInteger
from hy.models.complex import HyComplex
from hy.models.string import HyString
from hy.models.symbol import HySymbol
from hy.models.float import HyFloat
from hy.models.list import HyList
from hy.models.dict import HyDict
from hy.macros import require, process
from hy.util import str_type
import hy.importer
import traceback
import importlib
import codecs
import ast
import sys
from collections import defaultdict
_compile_time_ns = {}
def compile_time_ns(module_name):
ns = _compile_time_ns.get(module_name)
if ns is None:
ns = {'hy': hy, '__name__': module_name}
_compile_time_ns[module_name] = ns
return ns
_stdlib = {}
def load_stdlib():
import hy.core
for module in hy.core.STDLIB:
mod = importlib.import_module(module)
for e in mod.EXPORTS:
_stdlib[e] = module
class HyCompileError(HyError):
def __init__(self, exception, traceback=None):
self.exception = exception
self.traceback = traceback
def __str__(self):
if isinstance(self.exception, HyTypeError):
return str(self.exception)
if self.traceback:
tb = "".join(traceback.format_tb(self.traceback)).strip()
else:
tb = "No traceback available. 😟"
return("Internal Compiler Bug 😱\n%s: %s\nCompilation traceback:\n%s"
% (self.exception.__class__.__name__,
self.exception, tb))
class HyTypeError(TypeError):
def __init__(self, expression, message):
super(HyTypeError, self).__init__(message)
self.expression = expression
def __str__(self):
return (super(HyTypeError, self).__str__() + " (line %s, column %d)"
% (self.expression.start_line,
self.expression.start_column))
_compile_table = {}
def ast_str(foobar):
if sys.version_info[0] >= 3:
return str(foobar)
try:
return str(foobar)
except UnicodeEncodeError:
pass
enc = codecs.getencoder('punycode')
foobar, _ = enc(foobar)
return "hy_%s" % (str(foobar).replace("-", "_"))
def builds(_type):
unpythonic_chars = ["-"]
really_ok = ["-"]
if any(x in unpythonic_chars for x in str_type(_type)):
if _type not in really_ok:
raise TypeError("`build' needs to be *post* translated strings, "
"Mr. / Mrs. Hypser. -- `%s' sucks." % (_type))
def _dec(fn):
_compile_table[_type] = fn
return fn
return _dec
class Result(object):
"""
Smart representation of the result of a hy->AST compilation
This object tries to reconcile the hy world, where everything can be used
as an expression, with the Python world, where statements and expressions
need to coexist.
To do so, we represent a compiler result as a list of statements `stmts`,
terminated by an expression context `expr`. The expression context is used
when the compiler needs to use the result as an expression.
Results are chained by addition: adding two results together returns a
Result representing the succession of the two Results' statements, with
the second Result's expression context.
We make sure that a non-empty expression context does not get clobbered by
adding more results, by checking accesses to the expression context. We
assume that the context has been used, or deliberately ignored, if it has
been accessed.
The Result object is interoperable with python AST objects: when an AST
object gets added to a Result object, it gets converted on-the-fly.
"""
__slots__ = ("imports", "stmts", "temp_variables",
"_expr", "__used_expr", "contains_yield")
def __init__(self, *args, **kwargs):
if args:
# emulate kw-only args for future bits.
raise TypeError("Yo: Hacker: don't pass me real args, dingus")
self.imports = defaultdict(set)
self.stmts = []
self.temp_variables = []
self._expr = None
self.contains_yield = False
self.__used_expr = False
# XXX: Make sure we only have AST where we should.
for kwarg in kwargs:
if kwarg not in ["imports", "contains_yield", "stmts", "expr",
"temp_variables"]:
raise TypeError(
"%s() got an unexpected keyword argument '%s'" % (
self.__class__.__name__, kwarg))
setattr(self, kwarg, kwargs[kwarg])
@property
def expr(self):
self.__used_expr = True
return self._expr
@expr.setter
def expr(self, value):
self.__used_expr = False
self._expr = value
def add_imports(self, mod, imports):
"""Autoimport `imports` from `mod`"""
self.imports[mod].update(imports)
def is_expr(self):
"""Check whether I am a pure expression"""
return self._expr and not (self.imports or self.stmts)
@property
def force_expr(self):
"""Force the expression context of the Result.
If there is no expression context, we return a "None" expression.
"""
if self.expr:
return self.expr
# Spoof the position of the last statement for our generated None
lineno = 0
col_offset = 0
if self.stmts:
lineno = self.stmts[-1].lineno
col_offset = self.stmts[-1].col_offset
return ast.Name(id=ast_str("None"),
arg=ast_str("None"),
ctx=ast.Load(),
lineno=lineno,
col_offset=col_offset)
# XXX: Likely raise Exception here - this will assertionfail
# pypy since the ast will be out of numerical order.
def expr_as_stmt(self):
"""Convert the Result's expression context to a statement
This is useful when we want to use the stored expression in a
statement context (for instance in a code branch).
We drop ast.Names if they are appended to statements, as they
can't have any side effect. "Bare" names still get converted to
statements.
If there is no expression context, return an empty result.
"""
if self.expr and not (isinstance(self.expr, ast.Name) and self.stmts):
return Result() + ast.Expr(lineno=self.expr.lineno,
col_offset=self.expr.col_offset,
value=self.expr)
return Result()
def rename(self, new_name):
"""Rename the Result's temporary variables to a `new_name`.
We know how to handle ast.Names and ast.FunctionDefs.
"""
new_name = ast_str(new_name)
for var in self.temp_variables:
if isinstance(var, ast.Name):
var.id = new_name
var.arg = new_name
elif isinstance(var, ast.FunctionDef):
var.name = new_name
else:
raise TypeError("Don't know how to rename a %s!" % (
var.__class__.__name__))
self.temp_variables = []
def __add__(self, other):
# If we add an ast statement, convert it first
if isinstance(other, ast.stmt):
return self + Result(stmts=[other])
# If we add an ast expression, clobber the expression context
if isinstance(other, ast.expr):
return self + Result(expr=other)
if isinstance(other, ast.excepthandler):
return self + Result(stmts=[other])
if not isinstance(other, Result):
raise TypeError("Can't add %r with non-compiler result %r" % (
self, other))
# Check for expression context clobbering
if self.expr and not self.__used_expr:
traceback.print_stack()
print("Bad boy clobbered expr %s with %s" % (
ast.dump(self.expr),
ast.dump(other.expr)))
# Fairly obvious addition
result = Result()
result.imports = other.imports
result.stmts = self.stmts + other.stmts
result.expr = other.expr
result.temp_variables = other.temp_variables
result.contains_yield = False
if self.contains_yield or other.contains_yield:
result.contains_yield = True
return result
def __str__(self):
return (
"Result(imports=[%s], stmts=[%s], "
"expr=%s, contains_yield=%s)"
) % (
", ".join(ast.dump(x) for x in self.imports),
", ".join(ast.dump(x) for x in self.stmts),
ast.dump(self.expr) if self.expr else None,
self.contains_yield
)
def _branch(results):
"""Make a branch out of a list of Result objects
This generates a Result from the given sequence of Results, forcing each
expression context as a statement before the next result is used.
We keep the expression context of the last argument for the returned Result
"""
results = list(results)
ret = Result()
for result in results[:-1]:
ret += result
ret += result.expr_as_stmt()
for result in results[-1:]:
ret += result
return ret
def _raise_wrong_args_number(expression, error):
raise HyTypeError(expression,
error % (expression.pop(0),
len(expression)))
def checkargs(exact=None, min=None, max=None, even=None):
def _dec(fn):
def checker(self, expression):
if exact is not None and (len(expression) - 1) != exact:
_raise_wrong_args_number(
expression, "`%%s' needs %d arguments, got %%d" % exact)
if min is not None and (len(expression) - 1) < min:
_raise_wrong_args_number(
expression,
"`%%s' needs at least %d arguments, got %%d" % (min))
if max is not None and (len(expression) - 1) > max:
_raise_wrong_args_number(
expression,
"`%%s' needs at most %d arguments, got %%d" % (max))
is_even = not((len(expression) - 1) % 2)
if even is not None and is_even != even:
even_str = "even" if even else "odd"
_raise_wrong_args_number(
expression,
"`%%s' needs an %s number of arguments, got %%d"
% (even_str))
return fn(self, expression)
return checker
return _dec
class HyASTCompiler(object):
def __init__(self, module_name):
self.anon_fn_count = 0
self.anon_var_count = 0
self.imports = defaultdict(set)
self.module_name = module_name
if not module_name.startswith("hy.core"):
# everything in core needs to be explicit.
load_stdlib()
def get_anon_var(self):
self.anon_var_count += 1
return "_hy_anon_var_%s" % self.anon_var_count
def get_anon_fn(self):
self.anon_fn_count += 1
return "_hy_anon_fn_%d" % self.anon_fn_count
def update_imports(self, result):
"""Retrieve the imports from the result object"""
for mod in result.imports:
self.imports[mod].update(result.imports[mod])
def imports_as_stmts(self, expr):
"""Convert the Result's imports to statements"""
ret = Result()
for module, names in self.imports.items():
if None in names:
ret += self.compile([
HyExpression([
HySymbol("import"),
HySymbol(module),
]).replace(expr)
])
names = sorted(name for name in names if name)
if names:
ret += self.compile([
HyExpression([
HySymbol("import"),
HyList([
HySymbol(module),
HyList([HySymbol(name) for name in names])
])
]).replace(expr)
])
self.imports = defaultdict(set)
return ret.stmts
def compile_atom(self, atom_type, atom):
if atom_type in _compile_table:
ret = _compile_table[atom_type](self, atom)
if not isinstance(ret, Result):
ret = Result() + ret
return ret
def compile(self, tree):
try:
tree = process(tree, self.module_name)
_type = type(tree)
ret = self.compile_atom(_type, tree)
if ret:
self.update_imports(ret)
return ret
except HyCompileError:
# compile calls compile, so we're going to have multiple raise
# nested; so let's re-raise this exception, let's not wrap it in
# another HyCompileError!
raise
except Exception as e:
raise HyCompileError(e, sys.exc_info()[2])
raise HyCompileError(Exception("Unknown type: `%s'" % _type))
def _compile_collect(self, exprs):
"""Collect the expression contexts from a list of compiled expression.
This returns a list of the expression contexts, and the sum of the
Result objects passed as arguments.
"""
compiled_exprs = []
ret = Result()
for expr in exprs:
ret += self.compile(expr)
compiled_exprs.append(ret.force_expr)
return compiled_exprs, ret
def _compile_branch(self, exprs):
return _branch(self.compile(expr) for expr in exprs)
def _parse_lambda_list(self, exprs):
""" Return FunctionDef parameter values from lambda list."""
ret = Result()
args = []
defaults = []
varargs = None
kwargs = None
lambda_keyword = None
for expr in exprs:
if isinstance(expr, HyLambdaListKeyword):
if expr not in expr._valid_types:
raise HyTypeError(expr, "{0} is not a valid "
"lambda-keyword.".format(repr(expr)))
if expr == "&rest" and lambda_keyword is None:
lambda_keyword = expr
elif expr == "&optional":
if len(defaults) > 0:
raise HyTypeError(expr,
"There can only be &optional "
"arguments or one &key argument")
lambda_keyword = expr
elif expr == "&key":
lambda_keyword = expr
elif expr == "&kwargs":
lambda_keyword = expr
else:
raise HyTypeError(expr,
"{0} is in an invalid "
"position.".format(repr(expr)))
# we don't actually care about this token, so we set
# our state and continue to the next token...
continue
if lambda_keyword is None:
args.append(expr)
elif lambda_keyword == "&rest":
if varargs:
raise HyTypeError(expr,
"There can only be one "
"&rest argument")
varargs = str(expr)
elif lambda_keyword == "&key":
if type(expr) != HyDict:
raise HyTypeError(expr,
"There can only be one &key "
"argument")
else:
if len(defaults) > 0:
raise HyTypeError(expr,
"There can only be &optional "
"arguments or one &key argument")
# As you can see, Python has a funny way of
# defining keyword arguments.
it = iter(expr)
for k, v in zip(it, it):
args.append(k)
ret += self.compile(v)
defaults.append(ret.force_expr)
elif lambda_keyword == "&optional":
if isinstance(expr, HyList):
if not len(expr) == 2:
raise HyTypeError(expr,
"optional args should be bare names "
"or 2-item lists")
k, v = expr
else:
k = expr
v = HySymbol("None").replace(k)
args.append(k)
ret += self.compile(v)
defaults.append(ret.force_expr)
elif lambda_keyword == "&kwargs":
if kwargs:
raise HyTypeError(expr,
"There can only be one "
"&kwargs argument")
kwargs = str(expr)
return ret, args, defaults, varargs, kwargs
def _storeize(self, name):
"""Return a new `name` object with an ast.Store() context"""
if isinstance(name, Result):
if not name.is_expr():
raise TypeError("Can't assign to a non-expr")
name = name.expr
if isinstance(name, (ast.Tuple, ast.List)):
typ = type(name)
new_elts = []
for x in name.elts:
new_elts.append(self._storeize(x))
new_name = typ(elts=new_elts)
elif isinstance(name, ast.Name):
new_name = ast.Name(id=name.id, arg=name.arg)
elif isinstance(name, ast.Subscript):
new_name = ast.Subscript(value=name.value, slice=name.slice)
elif isinstance(name, ast.Attribute):
new_name = ast.Attribute(value=name.value, attr=name.attr)
else:
raise TypeError("Can't assign to a %s object" % type(name))
new_name.ctx = ast.Store()
ast.copy_location(new_name, name)
return new_name
@builds(list)
def compile_raw_list(self, entries):
ret = self._compile_branch(entries)
ret += ret.expr_as_stmt()
return ret
def _render_quoted_form(self, form, level):
"""
Render a quoted form as a new HyExpression.
`level` is the level of quasiquoting of the current form. We can
unquote if level is 0.
Returns a three-tuple (`imports`, `expression`, `splice`).
The `splice` return value is used to mark `unquote-splice`d forms.
We need to distinguish them as want to concatenate them instead of
just nesting them.
"""
if level == 0:
if isinstance(form, HyExpression):
if form and form[0] in ("unquote", "unquote_splice"):
if len(form) != 2:
raise HyTypeError(form,
("`%s' needs 1 argument, got %s" %
form[0], len(form) - 1))
return set(), form[1], (form[0] == "unquote_splice")
if isinstance(form, HyExpression):
if form and form[0] == "quasiquote":
level += 1
if form and form[0] in ("unquote", "unquote_splice"):
level -= 1
name = form.__class__.__name__
imports = set([name])
if isinstance(form, (HyList, HyDict)):
if not form:
contents = HyList()
else:
# If there are arguments, they can be spliced
# so we build a sum...
contents = HyExpression([HySymbol("+"), HyList()])
for x in form:
f_imports, f_contents, splice = self._render_quoted_form(x,
level)
imports.update(f_imports)
if splice:
to_add = f_contents
else:
to_add = HyList([f_contents])
contents.append(to_add)
return imports, HyExpression([HySymbol(name),
contents]).replace(form), False
elif isinstance(form, (HySymbol, HyLambdaListKeyword)):
return imports, HyExpression([HySymbol(name),
HyString(form)]).replace(form), False
return imports, HyExpression([HySymbol(name),
form]).replace(form), False
@builds("quote")
@builds("quasiquote")
@checkargs(exact=1)
def compile_quote(self, entries):
if entries[0] == "quote":
# Never allow unquoting
level = float("inf")
else:
level = 0
imports, stmts, splice = self._render_quoted_form(entries[1], level)
ret = self.compile(stmts)
ret.add_imports("hy", imports)
return ret
@builds("unquote")
@builds("unquote_splicing")
def compile_unquote(self, expr):
raise HyTypeError(expr,
"`%s' can't be used at the top-level" % expr[0])
@builds("eval")
@checkargs(exact=1)
def compile_eval(self, expr):
expr.pop(0)
ret = self.compile(HyExpression(
[HySymbol("hy_eval")] + expr + [HyExpression([HySymbol("locals")])]
+ [HyString(self.module_name)]).replace(expr)
)
ret.add_imports("hy.importer", ["hy_eval"])
return ret
@builds("do")
@builds("progn")
def compile_progn(self, expression):
expression.pop(0)
return self._compile_branch(expression)
@builds("throw")
@builds("raise")
@checkargs(max=1)
def compile_throw_expression(self, expr):
expr.pop(0)
ret = Result()
if expr:
ret += self.compile(expr.pop(0))
# Use ret.expr to get a literal `None`
ret += ast.Raise(
lineno=expr.start_line,
col_offset=expr.start_column,
type=ret.expr,
exc=ret.expr,
inst=None,
tback=None,
cause=None)
return ret
@builds("try")
def compile_try_expression(self, expr):
expr.pop(0) # try
try:
body = expr.pop(0)
except IndexError:
body = []
# (try something…)
body = self.compile(body)
var = self.get_anon_var()
name = ast.Name(id=ast_str(var), arg=ast_str(var),
ctx=ast.Store(),
lineno=expr.start_line,
col_offset=expr.start_column)
expr_name = ast.Name(id=ast_str(var), arg=ast_str(var),
ctx=ast.Load(),
lineno=expr.start_line,
col_offset=expr.start_column)
returnable = Result(expr=expr_name, temp_variables=[expr_name, name])
body += ast.Assign(targets=[name],
value=body.force_expr,
lineno=expr.start_line,
col_offset=expr.start_column)
body = body.stmts
if not body:
body = [ast.Pass(lineno=expr.start_line,
col_offset=expr.start_column)]
orelse = []
finalbody = []
handlers = []
handler_results = Result()
for e in expr:
if not len(e):
raise HyTypeError(e, "Empty list not allowed in `try'")
if e[0] in (HySymbol("except"), HySymbol("catch")):
handler_results += self._compile_catch_expression(e, name)
handlers.append(handler_results.stmts.pop())
elif e[0] == HySymbol("else"):
if orelse:
raise HyTypeError(
e,
"`try' cannot have more than one `else'")
else:
orelse = self._compile_branch(e[1:])
# XXX tempvar magic
orelse += orelse.expr_as_stmt()
orelse = orelse.stmts
elif e[0] == HySymbol("finally"):
if finalbody:
raise HyTypeError(
e,
"`try' cannot have more than one `finally'")
else:
finalbody = self._compile_branch(e[1:])
# XXX tempvar magic
finalbody += finalbody.expr_as_stmt()
finalbody = finalbody.stmts
else:
raise HyTypeError(e, "Unknown expression in `try'")
# Using (else) without (except) is verboten!
if orelse and not handlers:
raise HyTypeError(
e,
"`try' cannot have `else' without `except'")
# (try) or (try BODY)
# Generate a default handler for Python >= 3.3 and pypy
if not handlers and not finalbody and not orelse:
handlers = [ast.ExceptHandler(
lineno=expr.start_line,
col_offset=expr.start_column,
type=None,
name=None,
body=[ast.Pass(lineno=expr.start_line,
col_offset=expr.start_column)])]
ret = handler_results
if sys.version_info[0] >= 3 and sys.version_info[1] >= 3:
# Python 3.3 features a merge of TryExcept+TryFinally into Try.
return ret + ast.Try(
lineno=expr.start_line,
col_offset=expr.start_column,
body=body,
handlers=handlers,
orelse=orelse,
finalbody=finalbody) + returnable
if finalbody:
if handlers:
return ret + ast.TryFinally(
lineno=expr.start_line,
col_offset=expr.start_column,
body=[ast.TryExcept(
lineno=expr.start_line,
col_offset=expr.start_column,
handlers=handlers,
body=body,
orelse=orelse)],
finalbody=finalbody) + returnable
return ret + ast.TryFinally(
lineno=expr.start_line,
col_offset=expr.start_column,
body=body,
finalbody=finalbody) + returnable
return ret + ast.TryExcept(
lineno=expr.start_line,
col_offset=expr.start_column,
handlers=handlers,
body=body,
orelse=orelse) + returnable
@builds("except")
@builds("catch")
def magic_internal_form(self, expr):
raise HyTypeError(expr,
"Error: `%s' can't be used like that." % (expr[0]))
def _compile_catch_expression(self, expr, var):
catch = expr.pop(0) # catch
try:
exceptions = expr.pop(0)
except IndexError:
exceptions = HyList()
# exceptions catch should be either:
# [[list of exceptions]]
# or
# [variable [list of exceptions]]
# or
# [variable exception]
# or
# [exception]
# or
# []
if not isinstance(exceptions, HyList):
raise HyTypeError(exceptions,
"`%s' exceptions list is not a list" % catch)
if len(exceptions) > 2:
raise HyTypeError(exceptions,
"`%s' exceptions list is too long" % catch)
# [variable [list of exceptions]]
# let's pop variable and use it as name
if len(exceptions) == 2:
name = exceptions.pop(0)
if not isinstance(name, HySymbol):
raise HyTypeError(
exceptions,
"Exception storage target name must be a symbol.")
if sys.version_info[0] >= 3:
# Python3 features a change where the Exception handler
# moved the name from a Name() to a pure Python String type.
#
# We'll just make sure it's a pure "string", and let it work
# it's magic.
name = ast_str(name)
else:
# Python2 requires an ast.Name, set to ctx Store.
name = self._storeize(self.compile(name))
else:
name = None
try:
exceptions_list = exceptions.pop(0)
except IndexError:
exceptions_list = []
if isinstance(exceptions_list, list):
if len(exceptions_list):
# [FooBar BarFoo] → catch Foobar and BarFoo exceptions
elts, _type = self._compile_collect(exceptions_list)
_type += ast.Tuple(elts=elts,
lineno=expr.start_line,
col_offset=expr.start_column,
ctx=ast.Load())
else:
# [] → all exceptions catched
_type = Result()
elif isinstance(exceptions_list, HySymbol):
_type = self.compile(exceptions_list)
else:
raise HyTypeError(exceptions,
"`%s' needs a valid exception list" % catch)
body = self._compile_branch(expr)
body += ast.Assign(targets=[var],
value=body.force_expr,
lineno=expr.start_line,
col_offset=expr.start_column)
body += body.expr_as_stmt()
body = body.stmts
if not body:
body = [ast.Pass(lineno=expr.start_line,
col_offset=expr.start_column)]
# use _type.expr to get a literal `None`
return _type + ast.ExceptHandler(
lineno=expr.start_line,
col_offset=expr.start_column,
type=_type.expr,
name=name,
body=body)
@builds("if")
@checkargs(min=2, max=3)
def compile_if(self, expression):
expression.pop(0)
cond = self.compile(expression.pop(0))
body = self.compile(expression.pop(0))
orel = Result()
if expression:
orel = self.compile(expression.pop(0))
# We want to hoist the statements from the condition
ret = cond
if body.stmts or orel.stmts:
# We have statements in our bodies
# Get a temporary variable for the result storage
var = self.get_anon_var()
name = ast.Name(id=ast_str(var), arg=ast_str(var),
ctx=ast.Store(),
lineno=expression.start_line,
col_offset=expression.start_column)
# Store the result of the body
body += ast.Assign(targets=[name],
value=body.force_expr,
lineno=expression.start_line,
col_offset=expression.start_column)
# and of the else clause
orel += ast.Assign(targets=[name],
value=orel.force_expr,
lineno=expression.start_line,
col_offset=expression.start_column)
# Then build the if
ret += ast.If(test=ret.force_expr,
body=body.stmts,
orelse=orel.stmts,
lineno=expression.start_line,
col_offset=expression.start_column)
# And make our expression context our temp variable
expr_name = ast.Name(id=ast_str(var), arg=ast_str(var),
ctx=ast.Load(),
lineno=expression.start_line,
col_offset=expression.start_column)
ret += Result(expr=expr_name, temp_variables=[expr_name, name])
else:
# Just make that an if expression
ret += ast.IfExp(test=ret.force_expr,
body=body.force_expr,
orelse=orel.force_expr,
lineno=expression.start_line,
col_offset=expression.start_column)
return ret
@builds("print")
def compile_print_expression(self, expr):
call = expr.pop(0) # print
values, ret = self._compile_collect(expr)
if sys.version_info[0] >= 3:
call = self.compile(call)
ret += call
ret += ast.Call(func=call.expr,
args=values,
keywords=[],
starargs=None,
kwargs=None,
lineno=expr.start_line,
col_offset=expr.start_column)
else:
ret += ast.Print(
lineno=expr.start_line,
col_offset=expr.start_column,
dest=None,
values=values,
nl=True)
return ret
@builds("break")
def compile_break_expression(self, expr):
ret = ast.Break(lineno=expr.start_line,
col_offset=expr.start_column)
return ret
@builds("continue")
def compile_continue_expression(self, expr):
ret = ast.Continue(lineno=expr.start_line,
col_offset=expr.start_column)
return ret
@builds("assert")
@checkargs(1)
def compile_assert_expression(self, expr):
expr.pop(0) # assert
e = expr.pop(0)
ret = self.compile(e)
ret += ast.Assert(test=ret.force_expr,
msg=None,
lineno=e.start_line,
col_offset=e.start_column)
return ret
@builds("global")
@checkargs(1)
def compile_global_expression(self, expr):
expr.pop(0) # global
e = expr.pop(0)
return ast.Global(names=[ast_str(e)],
lineno=e.start_line,
col_offset=e.start_column)
@builds("yield")
@checkargs(max=1)
def compile_yield_expression(self, expr):
expr.pop(0)
ret = Result(contains_yield=True)
value = None
if expr != []:
ret += self.compile(expr.pop(0))
value = ret.force_expr
ret += ast.Yield(
value=value,
lineno=expr.start_line,
col_offset=expr.start_column)
return ret
@builds("import")
def compile_import_expression(self, expr):
def _compile_import(expr, module, names=None, importer=ast.Import):
if not names:
names = [ast.alias(name=ast_str(module), asname=None)]
ret = importer(lineno=expr.start_line,
col_offset=expr.start_column,
module=ast_str(module),
names=names,
level=0)
return Result() + ret
expr.pop(0) # index
rimports = Result()
while len(expr) > 0:
iexpr = expr.pop(0)
if isinstance(iexpr, HySymbol):
rimports += _compile_import(expr, iexpr)
continue
if isinstance(iexpr, HyList) and len(iexpr) == 1:
rimports += _compile_import(expr, iexpr.pop(0))
continue
if isinstance(iexpr, HyList) and iexpr:
module = iexpr.pop(0)
entry = iexpr[0]
if isinstance(entry, HyKeyword) and entry == HyKeyword(":as"):
if not len(iexpr) == 2:
raise HyTypeError(iexpr,
"garbage after aliased import")
iexpr.pop(0) # :as
alias = iexpr.pop(0)
names = [ast.alias(name=ast_str(module),
asname=ast_str(alias))]
rimports += _compile_import(expr, ast_str(module), names)
continue
if isinstance(entry, HyList):
names = []
while entry:
sym = entry.pop(0)
if entry and isinstance(entry[0], HyKeyword):
entry.pop(0)
alias = ast_str(entry.pop(0))
else:
alias = None
names.append(ast.alias(name=ast_str(sym),
asname=alias))
rimports += _compile_import(expr, module,
names, ast.ImportFrom)
continue
raise HyTypeError(
entry,
"Unknown entry (`%s`) in the HyList" % (entry)
)
return rimports
@builds("get")
@checkargs(2)
def compile_index_expression(self, expr):
expr.pop(0) # index
val = self.compile(expr.pop(0)) # target
sli = self.compile(expr.pop(0)) # slice
return val + sli + ast.Subscript(
lineno=expr.start_line,
col_offset=expr.start_column,
value=val.force_expr,
slice=ast.Index(value=sli.force_expr),
ctx=ast.Load())
@builds("slice")
@checkargs(min=1, max=4)
def compile_slice_expression(self, expr):
expr.pop(0) # index
val = self.compile(expr.pop(0)) # target
low = Result()
if expr != []:
low = self.compile(expr.pop(0))
high = Result()
if expr != []:
high = self.compile(expr.pop(0))
step = Result()
if expr != []:
step = self.compile(expr.pop(0))
# use low.expr, high.expr and step.expr to use a literal `None`.
return val + low + high + step + ast.Subscript(
lineno=expr.start_line,
col_offset=expr.start_column,
value=val.force_expr,
slice=ast.Slice(lower=low.expr,
upper=high.expr,
step=step.expr),
ctx=ast.Load())
@builds("assoc")
@checkargs(min=3, even=False)
def compile_assoc_expression(self, expr):
expr.pop(0) # assoc
# (assoc foo bar baz) => foo[bar] = baz
target = self.compile(expr.pop(0))
ret = target
i = iter(expr)
for (key, val) in ((self.compile(x), self.compile(y))
for (x, y) in zip(i, i)):
ret += key + val + ast.Assign(
lineno=expr.start_line,
col_offset=expr.start_column,
targets=[
ast.Subscript(
lineno=expr.start_line,
col_offset=expr.start_column,
value=target.force_expr,
slice=ast.Index(value=key.force_expr),
ctx=ast.Store())],
value=val.force_expr)
return ret
@builds("with_decorator")
@checkargs(min=1)
def compile_decorate_expression(self, expr):
expr.pop(0) # with-decorator
fn = self.compile(expr.pop(-1))
if not fn.stmts or not isinstance(fn.stmts[-1], ast.FunctionDef):
raise HyTypeError(expr, "Decorated a non-function")
decorators, ret = self._compile_collect(expr)
fn.stmts[-1].decorator_list = decorators
return ret + fn
@builds("with")
@checkargs(min=2)
def compile_with_expression(self, expr):
expr.pop(0) # with
args = expr.pop(0)
if len(args) > 2 or len(args) < 1:
raise HyTypeError(expr, "with needs [arg (expr)] or [(expr)]")
args.reverse()
ctx = self.compile(args.pop(0))
thing = None
if args != []:
thing = self._storeize(self.compile(args.pop(0)))
body = self._compile_branch(expr)
var = self.get_anon_var()
name = ast.Name(id=ast_str(var), arg=ast_str(var),
ctx=ast.Store(),
lineno=expr.start_line,
col_offset=expr.start_column)
# Store the result of the body in a tempvar
body += ast.Assign(targets=[name],
value=body.force_expr,
lineno=expr.start_line,
col_offset=expr.start_column)
the_with = ast.With(context_expr=ctx.force_expr,
lineno=expr.start_line,
col_offset=expr.start_column,
optional_vars=thing,
body=body.stmts)
if sys.version_info[0] >= 3 and sys.version_info[1] >= 3:
the_with.items = [ast.withitem(context_expr=ctx.force_expr,
optional_vars=thing)]
ret = ctx + the_with
# And make our expression context our temp variable
expr_name = ast.Name(id=ast_str(var), arg=ast_str(var),
ctx=ast.Load(),
lineno=expr.start_line,
col_offset=expr.start_column)
ret += Result(expr=expr_name, temp_variables=[expr_name, name])
return ret
@builds(",")
def compile_tuple(self, expr):
expr.pop(0)
elts, ret = self._compile_collect(expr)
ret += ast.Tuple(elts=elts,
lineno=expr.start_line,
col_offset=expr.start_column,
ctx=ast.Load())
return ret
@builds("list_comp")
@checkargs(min=2, max=3)
def compile_list_comprehension(self, expr):
# (list-comp expr (target iter) cond?)
expr.pop(0)
expression = expr.pop(0)
tar_it = iter(expr.pop(0))
targets = zip(tar_it, tar_it)
cond = self.compile(expr.pop(0)) if expr != [] else Result()
generator_res = Result()
generators = []
for target, iterable in targets:
comp_target = self.compile(target)
target = self._storeize(comp_target)
generator_res += self.compile(iterable)
generators.append(ast.comprehension(
target=target,
iter=generator_res.force_expr,
ifs=[]))
if cond.expr:
generators[-1].ifs.append(cond.expr)
compiled_expression = self.compile(expression)
ret = compiled_expression + generator_res + cond
ret += ast.ListComp(
lineno=expr.start_line,
col_offset=expr.start_column,
elt=compiled_expression.force_expr,
generators=generators)
return ret
@builds("kwapply")
@checkargs(2)
def compile_kwapply_expression(self, expr):
expr.pop(0) # kwapply
call = self.compile(expr.pop(0))
kwargs = self.compile(expr.pop(0))
if type(call.expr) != ast.Call:
raise HyTypeError(expr, "kwapplying a non-call")
call.expr.kwargs = kwargs.force_expr
return kwargs + call
@builds("not")
@builds("~")
@checkargs(1)
def compile_unary_operator(self, expression):
ops = {"not": ast.Not,
"~": ast.Invert}
operator = expression.pop(0)
operand = self.compile(expression.pop(0))
operand += ast.UnaryOp(op=ops[operator](),
operand=operand.expr,
lineno=operator.start_line,
col_offset=operator.start_column)
return operand
@builds("require")
def compile_require(self, expression):
"""
TODO: keep track of what we've imported in this run and then
"unimport" it after we've completed `thing' so that we don't polute
other envs.
"""
expression.pop(0)
for entry in expression:
__import__(entry) # Import it fo' them macros.
require(entry, self.module_name)
return Result()
@builds("and")
@builds("or")
@checkargs(min=2)
def compile_logical_or_and_and_operator(self, expression):
ops = {"and": ast.And,
"or": ast.Or}
operator = expression.pop(0)
values, ret = self._compile_collect(expression)
ret += ast.BoolOp(op=ops[operator](),
lineno=operator.start_line,
col_offset=operator.start_column,
values=values)
return ret
@builds("=")
@builds("!=")
@builds("<")
@builds("<=")
@builds(">")
@builds(">=")
@builds("is")
@builds("in")
@builds("is_not")
@builds("not_in")
@checkargs(min=2)
def compile_compare_op_expression(self, expression):
ops = {"=": ast.Eq, "!=": ast.NotEq,
"<": ast.Lt, "<=": ast.LtE,
">": ast.Gt, ">=": ast.GtE,
"is": ast.Is, "is_not": ast.IsNot,
"in": ast.In, "not_in": ast.NotIn}
inv = expression.pop(0)
op = ops[inv]
ops = [op() for x in range(1, len(expression))]
e = expression[0]
exprs, ret = self._compile_collect(expression)
return ret + ast.Compare(left=exprs[0],
ops=ops,
comparators=exprs[1:],
lineno=e.start_line,
col_offset=e.start_column)
@builds("+")
@builds("%")
@builds("/")
@builds("//")
@builds("*")
@builds("**")
@builds("<<")
@builds(">>")
@builds("|")
@builds("^")
@builds("&")
@checkargs(min=2)
def compile_maths_expression(self, expression):
ops = {"+": ast.Add,
"/": ast.Div,
"//": ast.FloorDiv,
"*": ast.Mult,
"-": ast.Sub,
"%": ast.Mod,
"**": ast.Pow,
"<<": ast.LShift,
">>": ast.RShift,
"|": ast.BitOr,
"^": ast.BitXor,
"&": ast.BitAnd}
inv = expression.pop(0)
op = ops[inv]
ret = self.compile(expression.pop(0))
for child in expression:
left_expr = ret.force_expr
ret += self.compile(child)
right_expr = ret.force_expr
ret += ast.BinOp(left=left_expr,
op=op(),
right=right_expr,
lineno=child.start_line,
col_offset=child.start_column)
return ret
@builds("-")
@checkargs(min=1)
def compile_maths_expression_sub(self, expression):
if len(expression) > 2:
return self.compile_maths_expression(expression)
else:
arg = expression[1]
ret = self.compile(arg)
ret += ast.UnaryOp(op=ast.USub(),
operand=ret.force_expr,
lineno=arg.start_line,
col_offset=arg.start_column)
return ret
@builds("+=")
@builds("/=")
@builds("//=")
@builds("*=")
@builds("_=")
@builds("%=")
@builds("**=")
@builds("<<=")
@builds(">>=")
@builds("|=")
@builds("^=")
@builds("&=")
@checkargs(2)
def compile_augassign_expression(self, expression):
ops = {"+=": ast.Add,
"/=": ast.Div,
"//=": ast.FloorDiv,
"*=": ast.Mult,
"_=": ast.Sub,
"%=": ast.Mod,
"**=": ast.Pow,
"<<=": ast.LShift,
">>=": ast.RShift,
"|=": ast.BitOr,
"^=": ast.BitXor,
"&=": ast.BitAnd}
op = ops[expression[0]]
target = self._storeize(self.compile(expression[1]))
ret = self.compile(expression[2])
ret += ast.AugAssign(
target=target,
value=ret.force_expr,
op=op(),
lineno=expression.start_line,
col_offset=expression.start_column)
return ret
@checkargs(1)
def _compile_keyword_call(self, expression):
expression.append(expression.pop(0))
expression.insert(0, HySymbol("get"))
return self.compile(expression)
@builds(HyExpression)
def compile_expression(self, expression):
if expression == []:
return self.compile_list(expression)
fn = expression[0]
func = None
if isinstance(fn, HyKeyword):
return self._compile_keyword_call(expression)
if isinstance(fn, HyString):
ret = self.compile_atom(fn, expression)
if ret:
return ret
if fn.startswith("."):
# (.split "test test") -> "test test".split()
# Get the attribute name
ofn = fn
fn = HySymbol(ofn[1:])
fn.replace(ofn)
# Get the object we want to take an attribute from
func = self.compile(expression.pop(1))
# And get the attribute
func += ast.Attribute(lineno=fn.start_line,
col_offset=fn.start_column,
value=func.force_expr,
attr=ast_str(fn),
ctx=ast.Load())
if not func:
func = self.compile(fn)
args, ret = self._compile_collect(expression[1:])
ret += ast.Call(func=func.expr,
args=args,
keywords=[],
starargs=None,
kwargs=None,
lineno=expression.start_line,
col_offset=expression.start_column)
return func + ret
@builds("def")
@builds("setv")
@checkargs(2)
def compile_def_expression(self, expression):
return self._compile_assign(expression[1], expression[2],
expression.start_line,
expression.start_column)
def _compile_assign(self, name, result,
start_line, start_column):
result = self.compile(result)
if result.temp_variables and isinstance(name, HyString):
result.rename(name)
return result
ld_name = self.compile(name)
st_name = self._storeize(ld_name)
result += ast.Assign(
lineno=start_line,
col_offset=start_column,
targets=[st_name], value=result.force_expr)
result += ld_name
return result
@builds("foreach")
@checkargs(min=1)
def compile_for_expression(self, expression):
expression.pop(0) # for
target_name, iterable = expression.pop(0)
target = self._storeize(self.compile(target_name))
ret = Result()
orel = Result()
# (foreach [] body (else …))
if expression and expression[-1][0] == HySymbol("else"):
else_expr = expression.pop()
if len(else_expr) > 2:
raise HyTypeError(
else_expr,
"`else' statement in `foreach' is too long")
elif len(else_expr) == 2:
orel += self.compile(else_expr[1])
orel += orel.expr_as_stmt()
ret += self.compile(iterable)
body = self._compile_branch(expression)
body += body.expr_as_stmt()
ret += ast.For(lineno=expression.start_line,
col_offset=expression.start_column,
target=target,
iter=ret.force_expr,
body=body.stmts,
orelse=orel.stmts)
ret.contains_yield = body.contains_yield
return ret
@builds("while")
@checkargs(min=2)
def compile_while_expression(self, expr):
expr.pop(0) # "while"
ret = self.compile(expr.pop(0))
body = self._compile_branch(expr)
body += body.expr_as_stmt()
ret += ast.While(test=ret.force_expr,
body=body.stmts,
orelse=[],
lineno=expr.start_line,
col_offset=expr.start_column)
ret.contains_yield = body.contains_yield
return ret
@builds(HyList)
def compile_list(self, expression):
elts, ret = self._compile_collect(expression)
ret += ast.List(elts=elts,
ctx=ast.Load(),
lineno=expression.start_line,
col_offset=expression.start_column)
return ret
@builds("lambda")
@builds("fn")
@checkargs(min=1)
def compile_function_def(self, expression):
called_as = expression.pop(0)
arglist = expression.pop(0)
ret, args, defaults, stararg, kwargs = self._parse_lambda_list(arglist)
args = ast.arguments(
args=[ast.Name(arg=ast_str(x), id=ast_str(x),
ctx=ast.Param(),
lineno=x.start_line,
col_offset=x.start_column)
for x in args],
vararg=stararg,
kwarg=kwargs,
kwonlyargs=[],
kw_defaults=[],
defaults=defaults)
body = self._compile_branch(expression)
if not body.stmts and called_as == "lambda":
ret += ast.Lambda(
lineno=expression.start_line,
col_offset=expression.start_column,
args=args,
body=body.force_expr)
return ret
if body.expr:
if body.contains_yield:
body += body.expr_as_stmt()
else:
body += ast.Return(value=body.expr,
lineno=body.expr.lineno,
col_offset=body.expr.col_offset)
if not body.stmts:
body += ast.Pass(lineno=expression.start_line,
col_offset=expression.start_column)
name = self.get_anon_fn()
ret += ast.FunctionDef(name=name,
lineno=expression.start_line,
col_offset=expression.start_column,
args=args,
body=body.stmts,
decorator_list=[])
ast_name = ast.Name(id=name,
arg=name,
ctx=ast.Load(),
lineno=expression.start_line,
col_offset=expression.start_column)
ret += Result(expr=ast_name, temp_variables=[ast_name, ret.stmts[-1]])
return ret
@builds("defclass")
@checkargs(min=1)
def compile_class_expression(self, expression):
expression.pop(0) # class
class_name = expression.pop(0)
if expression:
base_list = expression.pop(0)
if not isinstance(base_list, HyList):
raise HyTypeError(expression,
"Bases class must be a list")
bases_expr, bases = self._compile_collect(base_list)
else:
bases_expr = []
bases = Result()
body = Result()
# grab the doc string, if there is one
if expression and isinstance(expression[0], HyString):
docstring = expression.pop(0)
symb = HySymbol("__doc__")
symb.start_line = docstring.start_line
symb.start_column = docstring.start_column
body += self._compile_assign(symb, docstring,
docstring.start_line,
docstring.start_column)
body += body.expr_as_stmt()
if expression:
try:
body_expression = iter(expression.pop(0))
except TypeError:
raise HyTypeError(
expression,
"Wrong argument type for defclass slots definition.")
for b in body_expression:
if len(b) != 2:
raise HyTypeError(
expression,
"Wrong number of argument in defclass slot.")
body += self._compile_assign(b[0], b[1],
b.start_line, b.start_column)
body += body.expr_as_stmt()
if not body.stmts:
body += ast.Pass(lineno=expression.start_line,
col_offset=expression.start_column)
return bases + ast.ClassDef(
lineno=expression.start_line,
col_offset=expression.start_column,
decorator_list=[],
name=ast_str(class_name),
keywords=[],
starargs=None,
kwargs=None,
bases=bases_expr,
body=body.stmts)
@builds("defmacro")
@checkargs(min=1)
def compile_macro(self, expression):
expression.pop(0)
name = expression.pop(0)
if not isinstance(name, HySymbol):
raise HyTypeError(name, ("received a `%s' instead of a symbol "
"for macro name" % type(name).__name__))
name = HyString(name).replace(name)
new_expression = HyExpression([
HySymbol("with_decorator"),
HyExpression([HySymbol("hy.macros.macro"), name]),
HyExpression([HySymbol("fn")] + expression),
]).replace(expression)
# Compile-time hack: we want to get our new macro now
# We must provide __name__ in the namespace to make the Python
# compiler set the __module__ attribute of the macro function.
hy.importer.hy_eval(new_expression,
compile_time_ns(self.module_name),
self.module_name)
# We really want to have a `hy` import to get hy.macro in
ret = self.compile(new_expression)
ret.add_imports('hy', [None])
return ret
@builds("eval_and_compile")
def compile_eval_and_compile(self, expression):
expression[0] = HySymbol("progn")
hy.importer.hy_eval(expression,
compile_time_ns(self.module_name),
self.module_name)
expression.pop(0)
return self._compile_branch(expression)
@builds("eval_when_compile")
def compile_eval_when_compile(self, expression):
expression[0] = HySymbol("progn")
hy.importer.hy_eval(expression,
compile_time_ns(self.module_name),
self.module_name)
return Result()
@builds(HyInteger)
def compile_integer(self, number):
return ast.Num(n=int(number),
lineno=number.start_line,
col_offset=number.start_column)
@builds(HyFloat)
def compile_float(self, number):
return ast.Num(n=float(number),
lineno=number.start_line,
col_offset=number.start_column)
@builds(HyComplex)
def compile_complex(self, number):
return ast.Num(n=complex(number),
lineno=number.start_line,
col_offset=number.start_column)
@builds(HySymbol)
def compile_symbol(self, symbol):
if "." in symbol:
glob, local = symbol.rsplit(".", 1)
glob = HySymbol(glob).replace(symbol)
ret = self.compile_symbol(glob)
ret = ast.Attribute(
lineno=symbol.start_line,
col_offset=symbol.start_column,
value=ret,
attr=ast_str(local),
ctx=ast.Load()
)
return ret
if symbol in _stdlib:
self.imports[_stdlib[symbol]].add(symbol)
return ast.Name(id=ast_str(symbol),
arg=ast_str(symbol),
ctx=ast.Load(),
lineno=symbol.start_line,
col_offset=symbol.start_column)
@builds(HyString)
def compile_string(self, string):
return ast.Str(s=str_type(string),
lineno=string.start_line,
col_offset=string.start_column)
@builds(HyKeyword)
def compile_keyword(self, keyword):
return ast.Str(s=str_type(keyword),
lineno=keyword.start_line,
col_offset=keyword.start_column)
@builds(HyDict)
def compile_dict(self, m):
keyvalues, ret = self._compile_collect(m)
ret += ast.Dict(lineno=m.start_line,
col_offset=m.start_column,
keys=keyvalues[::2],
values=keyvalues[1::2])
return ret
def hy_compile(tree, module_name, root=ast.Module, get_expr=False):
"""
Compile a HyObject tree into a Python AST Module.
If `get_expr` is True, return a tuple (module, last_expression), where
`last_expression` is the.
"""
if hasattr(sys, "subversion"):
implementation = sys.subversion[0].lower()
elif hasattr(sys, "implementation"):
implementation = sys.implementation.name.lower()
body = []
expr = None
if tree:
compiler = HyASTCompiler(module_name)
result = compiler.compile(tree)
expr = result.force_expr
if not get_expr:
result += result.expr_as_stmt()
if isinstance(tree, list):
spoof_tree = tree[0]
else:
spoof_tree = tree
body = compiler.imports_as_stmts(spoof_tree) + result.stmts
ret = root(body=body)
# PyPy _really_ doesn't like the ast going backwards...
if implementation != "cpython":
for node in ast.walk(ret):
node.lineno = 1
node.col_offset = 1
if get_expr:
expr = ast.Expression(body=expr)
ret = (ret, expr)
return ret