2017-07-10 08:50:49 -07:00

95 lines
2.7 KiB
Hy

;; Copyright 2017 the authors.
;; This file is part of Hy, which is free software licensed under the Expat
;; license. See the LICENSE.
(import
[math [isnan]]
[hy.contrib.hy-repr [hy-repr]])
(defn test-hy-repr-roundtrip-from-value []
; Test that a variety of values round-trip properly.
(setv values [
None False True
5 5.1 '5 '5.1 Inf -Inf
(int 5)
1/2
5j 5.1j 2+1j 1.2+3.4j Inf-Infj
"" b""
'"" 'b""
"apple bloom" b"apple bloom" "⚘"
'"apple bloom" 'b"apple bloom" '"⚘"
"single ' quotes" b"single ' quotes"
"\"double \" quotes\"" b"\"double \" quotes\""
'mysymbol :mykeyword
[] (,) #{} (frozenset #{})
'[] '(,) '#{} '(frozenset #{})
'['[]]
'(+ 1 2)
[1 2 3] (, 1 2 3) #{1 2 3} (frozenset #{1 2 3})
'[1 2 3] '(, 1 2 3) '#{1 2 3} '(frozenset #{1 2 3})
{"a" 1 "b" 2 "a" 3} '{"a" 1 "b" 2 "a" 3}
[1 [2 3] (, 4 (, 'mysymbol :mykeyword)) {"a" b"hello"}]
'[1 [2 3] (, 4 (, mysymbol :mykeyword)) {"a" b"hello"}]])
(for [original-val values]
(setv evaled (eval (read-str (hy-repr original-val))))
(assert (= evaled original-val))
(assert (is (type evaled) (type original-val))))
(assert (isnan (eval (read-str (hy-repr NaN))))))
(defn test-hy-repr-roundtrip-from-str []
(setv strs [
"'Inf"
"'-Inf"
"'NaN"
"1+2j"
"NaN+NaNj"
"'NaN+NaNj"
"[1 2 3]"
"'[1 2 3]"
"[1 'a 3]"
"'[1 a 3]"
"'[1 'a 3]"
"[1 '[2 3] 4]"
"'[1 [2 3] 4]"
"'[1 '[2 3] 4]"
"'[1 `[2 3] 4]"
"'[1 `[~foo ~@bar] 4]"
"'[1 `[~(+ 1 2) ~@(+ [1] [2])] 4]"
"'[1 `[~(do (print x 'y) 1)] 4]"
"{1 20}"
"'{1 10 1 20}"
"'asymbol"
":akeyword"])
(for [original-str strs]
(setv rep (hy-repr (eval (read-str original-str))))
(assert (= rep original-str))))
(defn test-hy-model-constructors []
(import hy)
(assert (= (hy-repr (hy.HyInteger 7)) "'7"))
(assert (= (hy-repr (hy.HyString "hello")) "'\"hello\""))
(assert (= (hy-repr (hy.HyList [1 2 3])) "'[1 2 3]"))
(assert (= (hy-repr (hy.HyDict [1 2 3])) "'{1 2 3}")))
(defn test-hy-repr-self-reference []
(setv x [1 2 3])
(setv (get x 1) x)
(assert (= (hy-repr x) "[1 [...] 3]"))
(setv x {1 2 3 [4 5] 6 7})
(setv (get x 3 1) x)
(assert (in (hy-repr x) (list-comp
; The ordering of a dictionary isn't guaranteed, so we need
; to check for all possible orderings.
(+ "{" (.join " " p) "}")
[p (permutations ["1 2" "3 [4 {...}]" "6 7"])]))))
(defn test-hy-repr-dunder-method []
(defclass C [list] [__hy-repr__ (fn [self] "cuddles")])
(assert (= (hy-repr (C)) "cuddles")))
(defn test-hy-repr-fallback []
(defclass D [list] [__repr__ (fn [self] "cuddles")])
(assert (= (hy-repr (D)) "cuddles")))