hy/tests/native_tests/extra/anaphoric.hy
Kodi Arfer 2b11b9be20 Automatically read and write bytecode
Importing or executing a Hy file now loads the byte-compiled version if it exists and is up to date, and if not, the source is byte-compiled after it's parsed.

This change can speed up Hy a lot. Here are some examples comparing run times of the current master (491b474e) to this commit, on my laptop with Python 3.6:

- `nosetests --exclude='test_bin'` goes from 3.8 s to 0.7 s (a 5-fold speedup)
- `hy -c '(print "hello world")` goes from 0.47 s to 0.20 s (a 2-fold speedup)
- Rogue TV's startup goes from 3.6 s to 0.4 s (a 9-fold speedup)

Accompanying changes include:

- `setup.py` now creates and installs bytecode for `hy.core`, `hy.contrib`, and `hy.extra`.
- The `hyc` command under Python 3 now creates bytecode in `__pycache__`, as usual for Python 3, instead of putting the `.pyc` right next to the source file like Python 2 does.

I've removed a test of `hy.extra.anaphoric.a-if` that triggers #1268 when the test file is byte-compiled and then hits some weird `macroexpand` bug or something when I try to work around that—Nose crashes when trying to produce an error message, and I can't seem to replicate the bug without Nose.
2017-04-14 13:38:33 -07:00

143 lines
4.9 KiB
Hy

;; Copyright (c) 2013 James King <james@agentultra.com>
;; Permission is hereby granted, free of charge, to any person obtaining a
;; copy of this software and associated documentation files (the "Software"),
;; to deal in the Software without restriction, including without limitation
;; the rights to use, copy, modify, merge, publish, distribute, sublicense,
;; and/or sell copies of the Software, and to permit persons to whom the
;; Software is furnished to do so, subject to the following conditions:
;; The above copyright notice and this permission notice shall be included in
;; all copies or substantial portions of the Software.
;; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
;; THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;; DEALINGS IN THE SOFTWARE.
(import [hy.errors [HyMacroExpansionError]])
(require [hy.extra.anaphoric [*]])
;;;; some simple helpers
(defn assert-true [x]
(assert (= True x)))
(defn assert-false [x]
(assert (= False x)))
(defn assert-equal [x y]
(assert (= x y)))
(defn test-ap-if []
"NATIVE: testing anaphoric if"
(ap-if True (assert-true it))
(ap-if False True (assert-false it)))
(defn test-ap-each []
"NATIVE: testing anaphoric each"
(setv res [])
(ap-each [1 2 3 4] (.append res it))
(assert-equal res [1 2 3 4]))
(defn test-ap-each-while []
"NATIVE: testing anaphoric each-while"
(setv res [])
(ap-each-while [2 2 4 3 4 5 6] (even? it) (.append res it))
(assert-equal res [2 2 4]))
(defn test-ap-map []
"NATIVE: testing anaphoric map"
(assert-equal (list (ap-map (* it 3) [1 2 3]))
[3 6 9])
(assert-equal (list (ap-map (* it 3) []))
[])
(assert-equal (do (setv v 1 f 1) (list (ap-map (it v f) [(fn [a b] (+ a b))])))
[2]))
(defn test-ap-map-when []
"NATIVE: testing anaphoric map-when"
(assert-equal (list (ap-map-when even? (* it 2) [1 2 3 4]))
[1 4 3 8]))
(defn test-ap-filter []
"NATIVE: testing anaphoric filter"
(assert-equal (list (ap-filter (> it 2) [1 2 3 4]))
[3 4])
(assert-equal (list (ap-filter (even? it) [1 2 3 4]))
[2 4]))
(defn test-ap-reject []
"NATIVE: testing anaphoric filter"
(assert-equal (list (ap-reject (> it 2) [1 2 3 4]))
[1 2])
(assert-equal (list (ap-reject (even? it) [1 2 3 4]))
[1 3]))
(defn test-ap-dotimes []
"NATIVE: testing anaphoric dotimes"
(assert-equal (do (setv n []) (ap-dotimes 3 (.append n 3)) n)
[3 3 3])
(assert-equal (do (setv n []) (ap-dotimes 3 (.append n it)) n)
[0 1 2]))
(defn test-ap-first []
"NATIVE: testing anaphoric first"
(assert-equal (ap-first (> it 5) (range 10)) 6)
(assert-equal (ap-first (even? it) [1 2 3 4]) 2)
(assert-equal (ap-first (> it 10) (range 10)) None))
(defn test-ap-last []
"NATIVE: testing anaphoric last"
(assert-equal (ap-last (> it 5) (range 10)) 9)
(assert-equal (ap-last (even? it) [1 2 3 4]) 4)
(assert-equal (ap-last (> it 10) (range 10)) None))
(defn test-ap-reduce []
"NATIVE: testing anaphoric reduce"
(assert-equal (ap-reduce (* acc it) [1 2 3]) 6)
(assert-equal (ap-reduce (* acc it) [1 2 3] 6) 36)
(assert-equal (ap-reduce (+ acc " on " it) ["Hy" "meth"])
"Hy on meth")
(assert-equal (ap-reduce (+ acc it) [] 1) 1))
(defn test-ap-pipe []
"NATIVE: testing anaphoric pipe"
(assert-equal (ap-pipe 2 (+ it 1) (* it 3)) 9)
(assert-equal (ap-pipe [4 5 6 7] (list (rest it)) (len it)) 3))
(defn test-ap-compose []
"NATIVE: testing anaphoric compose"
(assert-equal ((ap-compose (+ it 1) (* it 3)) 2) 9)
(assert-equal ((ap-compose (list (rest it)) (len it)) [4 5 6 7]) 3))
(defn test-xi []
"NATIVE: testing xi forms"
;; test ordering
(assert-equal ((xi / x1 x2) 2 4) 0.5)
(assert-equal ((xi / x2 x1) 2 4) 2)
(assert-equal ((xi identity (, x5 x4 x3 x2 x1)) 1 2 3 4 5) (, 5 4 3 2 1))
(assert-equal ((xi identity (, x1 x2 x3 x4 x5)) 1 2 3 4 5) (, 1 2 3 4 5))
(assert-equal ((xi identity (, x1 x5 x2 x3 x4)) 1 2 3 4 5) (, 1 5 2 3 4))
;; test &rest
(assert-equal ((xi sum xi) 1 2 3) 6)
(assert-equal ((xi identity (, x1 xi)) 10 1 2 3) (, 10 (, 1 2 3)))
;; no parameters
(assert-equal ((xi list)) [])
(assert-equal ((xi identity "Hy!")) "Hy!")
(assert-equal ((xi identity "xi")) "xi")
(assert-equal ((xi + "Hy " "world!")) "Hy world!")
;; test skipped parameters
(assert-equal ((xi identity [x3 x1]) 1 2 3) [3 1])
;; test nesting
(assert-equal ((xi identity [x1 (, x2 [x3] "Hy" [xi])]) 1 2 3 4 5)
[1 (, 2 [3] "Hy" [(, 4 5)])])
;; test arg as function
(assert-equal ((xi x1 2 4) +) 6)
(assert-equal ((xi x1 2 4) -) -2)
(assert-equal ((xi x1 2 4) /) 0.5))