Merge branch 'master' into pr/262

This commit is contained in:
Paul Tagliamonte 2013-07-23 00:08:32 -04:00
commit 6d9b93567d
3 changed files with 206 additions and 5 deletions

View File

@ -38,6 +38,34 @@ Hy features a number special forms that are used to help generate
correct Python AST. The following are "special" forms, which may have
behavior that's slightly unexpected in some situations.
->
--
`->` or `threading macro` is used to avoid nesting of expressions. The threading
macro inserts each expression into the next expressions first argument place.
The following code demonstrates this:
.. code-block:: clj
=> (defn output [a b] (print a b))
=> (-> (+ 5 5) (output 5))
10 5
->>
---
`->>` or `threading tail macro` is similar to `threading macro` but instead of
inserting each expression into the next expressions first argument place it
appends it as the last argument. The following code demonstrates this:
.. code-block:: clj
=> (defn output [a b] (print a b))
=> (->> (+ 5 5) (output 5))
5 10
and
---
@ -135,6 +163,36 @@ the user enters `k`.
(print "Try again")))
cond
----
`cond` macro can be used to build nested if-statements.
The following example shows the relationship between the macro and the expanded
code:
.. code-block:: clj
(cond (condition-1 result-1)
(condition-2 result-2))
(if condition-1 result-1
(if condition-2 result-2))
As shown below only the first matching result block is executed.
.. code-block:: clj
=> (defn check-value [value]
... (cond ((< value 5) (print "value is smaller than 5"))
... ((= value 5) (print "value is equal to 5"))
... ((> value 5) (print "value is greater than 5"))
... (True (print "value is something that it should not be"))))
=> (check-value 6)
value is greater than 5
continue
--------
@ -229,9 +287,30 @@ below:
Meow
defn / defun
------------
defmacro
--------
`defmacro` is used to define macros. The general format is
`(defmacro [parameters] expr)`.
Following example defines a macro that can be used to swap order of elements in
code, allowing the user to write code in infix notation, where operator is in
between the operands.
.. code-block:: clj
=> (defmacro infix [code]
... (quasiquote (
... (unquote (get code 1))
... (unquote (get code 0))
... (unquote (get code 2)))))
=> (infix (1 + 1))
2
eval
----
@ -245,6 +324,33 @@ eval-when-compile
-----------------
first / car
-----------
`first` and `car` are macros for accessing the first element of a collection:
.. code-block:: clj
=> (first (range 10))
0
for
---
`for` macro is used to build nested `foreach` loops. The macro takes two
parameters, first being a vector specifying collections to iterate over and
variables to bind. The second parameter is a statement which is executed during
each loop:
.. code-block:: clj
(for [x iter y iter] stmt)
(foreach [x iter]
(foreach [y iter] stmt))
foreach
-------
@ -310,6 +416,25 @@ Example usages:
global
------
`global` can be used to mark a symbol as global. This allows the programmer to
assign a value to a global symbol. Reading a global symbol does not require the
`global` keyword, just the assigning does.
Following example shows how global `a` is assigned a value in a function and later
on printed on another function. Without the `global` keyword, the second function
would thrown a `NameError`.
.. code-block:: clj
(defn set-a [value]
(global a)
(setv a value))
(defn print-a []
(print a))
(set-a 5)
(print-a)
if
--
@ -412,6 +537,10 @@ function is defined and passed to another function for filtering output.
Dave
let
---
list-comp
---------
@ -503,6 +632,28 @@ the `print` form is used to output on screen. Example usage:
require
-------
`require` is used to import macros from a given module. It takes at least one
parameter specifying the module which macros should be imported. Multiple
modules can be imported with a single `require`.
The following example will import macros from `module-1` and `module-2`:
.. code-block:: clj
(require module-1 module-2)
rest / cdr
----------
`rest` and `cdr` return the collection passed as an argument without the first
element:
.. code-block:: clj
=> (rest (range 10))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
slice
-----
@ -583,6 +734,33 @@ be executed. If no errors are raised the `else` block is executed. Regardless
if an error was raised or not, the `finally` block is executed as last.
unless
------
`unless` macro is a shorthand for writing a if-statement that checks if the
given conditional is False. The following shows how the macro expands into code.
.. code-block:: clj
(unless conditional statement)
(if conditional
None
(do statement))
when
----
`when` is similar to `unless`, except it tests when the given conditional is
True. It is not possible to have an `else` block in `when` macro. The following
shows how the macro is expanded into code.
.. code-block:: clj
(when conditional statement)
(if conditional (do statement))
while
-----

View File

@ -1200,11 +1200,18 @@ class HyASTCompiler(object):
thing = self._storeize(self.compile(args.pop(0)))
body = self._compile_branch(expr)
body += body.expr_as_stmt()
if not body.stmts:
body += ast.Pass(lineno=expr.start_line,
col_offset=expr.start_column)
var = self.get_anon_var()
name = ast.Name(id=ast_str(var), arg=ast_str(var),
ctx=ast.Store(),
lineno=expr.start_line,
col_offset=expr.start_column)
# Store the result of the body in a tempvar
body += ast.Assign(targets=[name],
value=body.force_expr,
lineno=expr.start_line,
col_offset=expr.start_column)
the_with = ast.With(context_expr=ctx.force_expr,
lineno=expr.start_line,
@ -1216,7 +1223,16 @@ class HyASTCompiler(object):
the_with.items = [ast.withitem(context_expr=ctx.force_expr,
optional_vars=thing)]
return ctx + the_with
ret = ctx + the_with
# And make our expression context our temp variable
expr_name = ast.Name(id=ast_str(var), arg=ast_str(var),
ctx=ast.Load(),
lineno=expr.start_line,
col_offset=expr.start_column)
ret += Result(expr=expr_name, temp_variables=[expr_name, name])
return ret
@builds(",")
def compile_tuple(self, expr):

View File

@ -411,6 +411,13 @@
(with [(open "README.md" "r")] (do)))
(defn test-with-return []
"NATIVE: test that with returns stuff"
(defn read-file [filename]
(with [fd (open filename "r")] (.read fd)))
(assert (!= 0 (len (read-file "README.md")))))
(defn test-for-doodle []
"NATIVE: test for-do"
(do (do (do (do (do (do (do (do (do (setv (, x y) (, 0 0)))))))))))